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Chapter 1

Algebraic number fields

1.1 Elements integral over a ring

Before formally defining the notion of an algebraic number field or an alge-
braic integer, we will define the notion of integrality in a general context of
commutative rings with unity, hereafter rings.

Definition 1.1. Let A,B be rings such that A ⊂ B. An element b ∈ B is
called integral over A if it satisfies an equation of the form

xn + a1x
n−1 + · · ·+ an = 0, n ≥ 1,

with coefficients ai ∈ A. The ring B is called integral over A if all elements
b ∈ B are integral over A.

Example 1.1. Let A = Z and B = Z[i]. Then i ∈ B is integral over A as
it is a root of the polynomial x2 + 1 = 0. Also, B is integral over A. Any
α = a+ ib ∈ B satisfies the polynomial x2 − 2ax+ a2 + b2.

Theorem 1.1. Let R be a ring, A a subring of R, and x ∈ R. The following
statements are equivalent:

(i) There exists a0, . . . , an−1 ∈ A such that

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0 (1.1)

(i.e., x is a root of a monic polynomial with coefficients in A).

9



10 CHAPTER 1. ALGEBRAIC NUMBER FIELDS

(ii) The ring A[x] is an A-module of finite-type.

(iii) There exists a subring B if R which contains A and x and which is an
A-module of finite-type.

Proof. (i) ⇒ (ii)

Let M be the A-submodule of R generated by 1, x, . . . , xn−1. By (i), xn ∈
M . Multiplying (1.1) with xj, we obtain xn+j = −an−1x

n+j−1 − · · · − a0x
j.

Induction on j implies that xn+j ∈M , for all j ≥ 0. As A[x] is the A-module
generated by {xk, k ≥ 0}, we see that A[x] = M .

(ii) ⇒ (iii)

Take B = A[x].

(iii) ⇒ (i)

Let {y1, . . . , yn} be a finite set of generators for B as a module over A, i.e.,
B = Ay1 + · · · + Ayn. Since x ∈ B and since B is a subring of R, it follows
that xyi ∈ B for all i = 1, . . . , n. Therefore,

xyi =
n∑
j=1

aijyj,

for any i = 1, . . . , n; aij ∈ A, 1 ≤ i, j ≤ n. This means that

n∑
j=1

(δijx− aij)yj = 0, i = 1, . . . , n.

Consider this system of n homogeneous linear equations in {y1, . . . , yn}.
Write d for the determinant det(δijx − aij). Multiplying the above equa-
tion by the adjoint of the matrix (δijx− aij), we see that dyi = 0 for every i.
This means that d · b = 0 for all b ∈ B; in particular, d · 1 = 0, so d = 0. But
d is clearly a monic polynomial in x, since the highest order term appears

in the expansion of the product
n∏
i=1

(x − aii) of the entries of the principal

diagonal. Thus (iii) implies (i).

Proposition 1.1. Let R be a ring, A a subring of R, and let (xi)1≤i≤n be a
finite set of elements of R. If, for all i, xi is integral over A[x1, . . . , xi−1],
then A[x1, . . . , xn] is an A-module of finite-type.
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Proof. We argue by induction on n. The case n = 1 follows from Theorem
1.1 (ii).

Now assume that B = A[x1, . . . , xn−1] is an A-module of finite-type. Then

B =
p∑
j=1

Abj for some b1, . . . , bp ∈ B. Writing A[x1, . . . , xn−1, xn] = B[xn], the

case n = 1 implies that is a B-module of finite-type. Write B[xn] =
q∑

k=1

Bck

for some c1, . . . , cq ∈ B[xn]. Then

A[x1, . . . , xn] =

q∑
k=1

Bck =

q∑
k=1

( p∑
j=1

Abj)ck =
∑
j,k

Abjck

Thus (bjck)1≤j≤p; 1≤k≤q is a finite set of generators for A[x1, . . . , xn] as a
module over A.

1.2 Algebraic numbers and algebraic integers

Definition 1.2. A complex number α is said to be algebraic if α is a root
of a non-zero polynomial p(x) ∈ Q[x]. A complex number α is called tran-
scendental if α is not algebraic.

In general, for L/K a field extension and α an element of L, we say α is
algebraic overK if α is a root of a non-zero polynomial p(x) ∈ K[x]. If every
element of L is algebraic over K, then we say L is an algebraic extension, or
L is algebraic over K.

Definition 1.3. Let L be a field extension of K, α an element of L and
K[x] the ring of polynomials in x over K. The minimal polynomial of α
is defined as the monic polynomial of least degree among all polynomials in
K[x] having α as a root. It is denoted by mα.

Example 1.2.
√

2 is algebraic over Q with minimal polynomial x2 − 2.

Note that the minimal polynomial of an element is irreducible.

Example 1.3. Let p be a prime. Let ζp be a primitive pth-root of unity with
minimal polynomial xp−1

x−1
= 1 + x+ · · ·+ xp−1 over Q.
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The set {q(x) ∈ Q[x] | q(α) = 0} is an ideal of Q[x] . As Q[x] is a principal
ideal domain (PID), we have {q(x) ∈ Q[x] | q(α) = 0} = 〈mα〉 ; where mα is
the minimal polynomial of α . If mα = xn + a1x

n−1 + · · ·+ a0 ; where ai ∈ Q
then degree of α is n, denoted by deg(α) .

Define the set Q[α] := {f(α)|f(x) ∈ Q[x]}.

Proposition 1.2. Let α be an algebraic number of degree n. Then the subring
Q[α] of C is a field.

Proof. Let mα be the minimal polynomial of α. Consider the ring homomor-
phism

q : Q[x] −→ C

defined by
m∑
i=0

bixi 7−→
m∑
i=0

biαi

Kernel of q, Ker(q) = {f(x) ∈ Q[x] | f(α) = 0} = 〈mα〉 is an ideal of Q[x].

Image of q, Im(q) = Q[α] is a subring of C.

By the 1st Homomorphism Theorem for Rings,

Q[x]

〈mα〉
∼= Q[α]

Now we claim that Q[x]
〈mα〉 is a field. It is enough to show that 〈mα〉 is a maximal

ideal of Q[x].

Let f /∈ 〈mα〉, i.e., mα - f . The ideal generated by mα and f is a principal
ideal generated by, say g.

Since g|mα, we have mα = c.g, where c ∈ Q[x]. But mα is an irreducible
polynomial, so c ∈ Q∗. But this is impossible because g|f and mα - f . Thus,
g ∈ Q∗ and 〈g〉 = Q[x]. Hence 〈mα〉 is maximal.

Definition 1.4. A subfield K of C is called an algebraic number field or
simply a number field if dimQ(K) < ∞, when K is taken as a vector space
over Q. If dimQ(K) = n, then degree of K is n.
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Note that any finite extension is an algebraic extension, hence the name
algebraic number field.

Example 1.4. The field K = Q[
√

2] is a subfield of C. K is an algebraic
number field with dimQ(K) = 2.

Example 1.5. Referring to example 1.3, K = Q[ζp] is a number field with
dimQ(K) = p− 1.

Remark 1.1. Any element α in a number field K is algebraic.

Remark 1.2. If α is an algebraic number of degree n, then Q[α] is a number
field of degree n.

Proof. Since α is an algebraic number of degree n, then anαn + an−1α
n−1 +

· · ·+ a0 = 0 where ai ∈ Q, an 6= 0. Hence αn = − 1
an

(an−1α
n−1 + · · ·+ a0).

Thus the span of {1, α, · · · , αn−1} is Q[α].

To show : {1, α, · · · , αn−1} is linearly independent over Q.

Proof : Suppose there exist bi ∈ Q and not all bi = 0, such that b0 + b1α +
· · · + bn−1α

n−1 = 0. Then deg(α) = n − 1, which is a contradiction to the
hypothesis.

Definition 1.5. A complex number α is said to be an algebraic integer if
α is a root of a monic polynomial in Z[x].

Example 1.6. Let K = Q[
√

2]. Then
√

2 ∈ K is an algebraic integer, while
2
3
∈ K is an algebraic number but not an algebraic integer.

Remark 1.3. An algebraic integer is an algebraic number.

Remark 1.4. An element of Z is an algebraic integer.

Remark 1.5. If α ∈ Q is an algebraic integer, then α ∈ Z.
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Proof. Let α = r
s
∈ Q where gcd(r, s) = 1 and α satisfies xn + a1x

n−1 + · · ·+
a0 = 0; ai ∈ Z, i.e., rn

sn
+ · · ·+ a0 = 0. Multiplying the above equation by sn

we get, rn + sa1r
n−1 + · · ·+ sna0 = 0.

So rn = −s(a1r
n−1 + · · · + sn−1a0). Hence s|rn, i.e., s|r. Thus s = ±1 (as

gcd(s, r) = 1).

Thus, α ∈ Z.

Remark 1.6. For any algebraic number α, there exists m 6= 0 ∈ Z such that
mα is an algebraic integer.

Proof. If deg(α) = n, then there exist ai ∈ Q such that αn+a1α
n−1+· · ·+an =

0. Choose m ∈ Z such that mai ∈ Z for every i.

Multiplying the above equation by mn, we get (mα)n+(ma1)(mα)n−1 + · · ·+
mnan = 0.

Thus, mα is an algebraic integer.

Definition 1.6. A polynomial f = anx
n + · · · + a0 ∈ Z[x] is said to be

primitive if gcd(a0, a1, . . . , an) = 1.

Hence any monic polynomial in Z[x] is primitive. We recall the famous
Gauss’s lemma.

Lemma 1.1. (Gauss) The product of two primitive polynomials in Z[x] is
primitive.

Remark 1.7. Any polynomial f ∈ Q[x] can be written in the form f = a
b
g;

where g is primitive, g ∈ Z[x] and a,b ∈ Z with gcd(a, b) = 1. In fact, we
can also ensure that the leading coefficient of g is a positive integer.

Proposition 1.3. The following are equivalent:

(i) α is an algebraic integer.

(ii) mα is a monic polynomial in Z[x].

(iii) Z[α] is a finitely generated Z-module.

(iv) There exists a finitely-generated Z-submodule M 6= 0 of C such that αM
⊂ M.
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Proof. (i) ⇒ (ii)

Let f = xn + a1x
n−1 + · · · + an; ai ∈ Z such that f(α) = 0. Let mα be the

minimal polynomial of α ∈ Q[x].

Then mα|f , i.e., f = gmα where g ∈ Q[x]. By remark 7, mα = a
b
m′α

and g = c
d
g′; where m′α, g′ ∈ Z[x] are primitive and a, b, c, d ∈ Z such that

gcd(a, b) = gcd(c, d) = 1, also the leading coefficients of m′α, g′ are positive
integers.

So, f = ac
bd
m′αg

′ and m′αg′ is also primitive (by Gauss Lemma).

Comparing the gcd of coefficients on both sides of (bd)f = (ac)m′αg
′, we

get bd = ±ac (since f is primitive). Hence f = ±m′αg′. In fact, we have
f = m′αg

′, as leading coefficients of all of them are positive integers.

Since f is monic, comparing the leading coefficients of f = m′αg
′, we get the

leading coefficient of m′α = 1. Also, mα = a
b
m′α implies that m′α(α) = 0.

Hence mα = m′α as both are monic polynomials of same degree for which α
is a root.

(ii) ⇒ (iii)

Let φ = xn + an−1x
n−1 + · · ·+ a0 ∈ Z[x] be a polynomial such that φ(α) = 0.

Then clearly Z[α] is generated by 1, α, . . . , αn−1 over Z.

(iii) ⇒ (iv)

Clearly, if we take M = Z[α], then αZ[α] ⊂ Z[α].

(iv) ⇒ (i)

LetM = Zv1+· · ·+Zvn ⊂ C be a finitely-generated Z-module and α 6= 0 ∈ C
such that αM ⊂M . Then αvi =

n∑
j=0

aijvj; where aij ∈ Z for every i, j. Define

A = (aij), then Av = αv, i.e., α is a characteristic value of A and it satisfies
the characteristic equation, which is of degree n and is monic. Since aij ∈ Z,
means the characteristic equation belongs to Z[x]. Hence α is an algebraic
integer of degree n.

1.3 Ring of integers

Let K be a number field. Let OK denote the set of algebraic integers in
K. If α, β ∈ OK , then by Proposition 1.3, Z[α], Z[β] are finitely-generated
Z-modules. Then the ringM = Z[α, β] is also a finitely generated Z-module.
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Let γ = α± β or γ = αβ, then γM ⊂M (by Proposition 1.3). Hence α± β
and αβ are in OK .

Definition 1.7. Let K be a number field of degree n. The set of algebraic
integers in K, denoted by OK, is called the ring of integers of K.

1.3.1 Ring of integers for quadratic fields

Definition 1.8. An algebraic number field K of degree 2 is called a quadratic
field.

Let K be a quadratic field and let α 6= 0 ∈ K. Since dimQ(K) = 2; {1,
α, α2} are linearly dependent over Q, i.e., a0 + a1α + a2α

2 = 0 for some
a0, a1, a2 ∈ Q. Thus any α ∈ K is a root of an irreducible polynomial in Q[x]
of degree at most 2.

But K should contain at least one element β whose irreducible polynomial
in Q[x] is of degree 2, since otherwise K = Q. Then {1, β} forms a base of
K over Q, i.e., K = Q[β]. Let a2β

2 + a1β + a0 = 0; where without loss of
generality, we may suppose that ai ∈ Z and a2 6= 0.

Multiplying by 4a2 we get, (2a2β + a1)2 = a2
1 − 4a0a2. Let γ = 2a2β + a1.

We have K = Q[γ].

Denoting m := a2
1 − 4a0a2 ∈ Z, we see that K = Q[

√
m]. We could suppose,

without loss of generality, that m is square-free.

Definition 1.9. A quadratic field is called real or imaginary depending on
K ⊂ R or not.

A quadratic field is real, if and only if K = Q[
√
m] with square-free m > 1 ∈

Z. Also, if K is an imaginary quadratic field, then K ∩ R = Q.

Any α ∈ K is of the form α = p + q(
√
m); p, q ∈ Q. Define the conjugate

α′ = p − q(
√
m). α is a root of (x − α)(x − α′) = x2 − (α + α′)x + αα′ =

x2 − 2px+ p2 − q2m ∈ Q[x].

Let OK be the ring of integers in K. Any α ∈ OK is of the form p+ q(
√
m)

for some p, q ∈ Q.

(i) If deg(mα) = 1, then mα = (x− a) for a ∈ Z.
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This implies a = p and q = 0.

Thus, α + α′ = 2p = 2a ∈ Z and αα′ = p2 − q2m = a2 ∈ Z.

(ii) If deg(mα) = 2, then mα = x2 + cx + d ∈ Z[x] for some c and d. Since
α is a root of x2 − 2px + p2 − q2m ∈ Q[x], implies −c = 2p = α + α′ and
d = p2 − q2m = αα′.

Conversely, for p, q ∈ Q, if 2p and p2 − q2m are in Z, then α = p+ q(
√
m) ∈

OK .

Thus, for α = p+ q(
√
m) ∈ K to belong to OK , it is necessary and sufficient

that 2p and p2 − q2m are both in Z.

We will use this to explicitly calculate OK for quadratic fields K.

Theorem 1.2. Let K be a quadratic field and let OK be its ring of integers.
Then

OK =

{
Z + Z

(
1+
√
m

2
), if m ≡ 1 (mod 4)

Z + Z(
√
m), if m ≡ 2, 3 (mod 4)

Proof. For p, q ∈ Q, let α = p + q(
√
m) be in OK , then a = 2p and b =

p2 − q2m ∈ Z. Hence, a
2−4q2m

4
∈ Z. In particular, 4q2m ∈ Z.

Since m is square-free, 4q2m = (2q)2m ∈ Z. If q has a denominator, then m
will have to cancel out the square of the denominator. This will contradict
the choice of m. Hence 2q ∈ Z, and we can write q = f

2
with f ∈ Z. Now,

a2 − f 2m ≡ 0 (mod 4).

Case(i)

Let m ≡ 1 (mod 4). Then a2 ≡ f 2 (mod 4), i.e., f and a are both even or
both odd. Since m ≡ 1 (mod 4), 1+

√
m

2
∈ OK , as it is a root of x2− x+ 1−m

4
.

Now α = p + q(
√
m) = a

2
+ f

2
(
√
m) = a−f

2
+ f

2

(√
m + 1). Since a and f are

both even or both odd, a−f = 2k for some k ∈ Z. Implies α = k+f
(√

m+1
2

).
Thus, OK = Z + Z

(√
m+1
2

).

Case(ii)

Let m ≡ 2,3 (mod 4), then a2 ≡ f 2m (mod 4) if and only if a and f are
both even. Because, for any a ∈ Z, a2 ≡ 0 (mod 4) or a2 ≡ 1 (mod 4). So
in a2 ≡ f 2m (mod 4), LHS has choices 0̄ or 1̄ and RHS has choices 0̄, 2̄ and
3̄. So a has to be even, hence 2|f , i.e., f is even. Hence α = p + q(

√
m) =

a
2

+ f
2
(
√
m) ∈ Z + Z(

√
m). Thus, OK = Z + Z(

√
m).
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Chapter 2

Conjugates, norm, trace and
discriminant

2.1 Conjugates

We begin with the following lemma.

Lemma 2.1. Any monic irreducible polynomial f ∈ Q[x] is the minimal
polynomial for any of its roots.

Proof. Let α ∈ C be such that f(α) = 0. Then α is an algebraic number.
Let mα be the minimal polynomial of α. This implies mα|f , i.e., f = mαg,
where g ∈ Q[x].

Now mα /∈ Q and f is irreducible. Hence, f = c · mα, where c ∈ Q. Also
since f,mα are both monic, implies c = 1 and thus f = mα.

Let α1, α2 be two algebraic numbers with the same minimal polynomial f ∈
Q[x]. Then for any g ∈ Q[x], g(α1) = 0, if and only if g(α2) = 0. So,
φ : Q[α1] −→ Q[α2] defined by

m∑
i=0

aiα
i
1 7−→

m∑
i=0

aiα
i
2

is an isomorphism of Q[α1] onto Q[α2]. The mapping φ is identity on Q and
takes α1 to α2.

19
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Conversely, let α1 be any algebraic number with minimal polynomial f . Let
φ be an embedding of Q[α1] into C, such that φ(a) = a for every a ∈ Q.

Now let g =
m∑
i=0

aix
i ∈ Q[x] be such that g(α1) = 0. Hence, φ(g(α1)) =

φ(0) = 0. Now, φ(g(α1)) = φ(
m∑
i=0

aiα
i
1) =

m∑
i=0

aiφ(α1)i = g(φ(α1)). Thus φ(α)

is also a zero of g.

Also, if g(φ(α1)) = 0, then since φ is one-one, g(φ(α1)) = φ(g(α1)) = 0,
implies g(α1) = 0. Hence, for any g ∈ Q[x], g(α1) = 0 if and only if
g(φ(α1)) = 0.

The set of all polynomials in Q[x] having φ(α1) as a root is precisely the ideal
〈f〉 of Q[x]. Thus φ(α1) is an algebraic number with minimal polynomial f .

Definition 2.1. Two algebraic numbers α1, α2 as above are called conju-
gates of each other, i.e., two algebraic numbers are called conjugates of each
other if they are the roots of the same irreducible polynomial.

Example 2.1. Let α = a+ ib ∈ Z[i], b 6= 0. Then the conjugate of α is the
element α′ = a− ib and both have the minimal polynomial x2−2ax+a2 +b2.

Lemma 2.2. Let K be a field of characteristic zero or a finite field, let
f ∈ K[x] be a monic irreducible polynomial of degree n. Then the n roots
x1, . . . , xn of f are distinct.

Proof. Let f(x) = xn + a1x
n−1 + · · ·+ an ∈ K[x]. Let x1 = α be a root of f ,

i.e., deg(α) = n and f is its minimal polynomial. Further assume that α is
a repeated root of f . Then f ′(x) = nxn−1 + · · · + an−1 ∈ K[x] is such that
f ′(α) = 0.

Since f is the minimal polynomial of α, hence it divides any polynomial for
which α is a root, i.e., f |f ′. But deg(f ′) < deg(f). This is a contradiction,
provided f ′ 6= 0. This is obvious when the characteristic of the field is zero,
as f is a non-constant polynomial.

Now suppose K is a finite field of characteristic p and if possible let f ′ = 0,
i.e., all monomials in f have some multiples of p as their degree. So, f(x) =
g(xp) for some polynomial g.



2.1. CONJUGATES 21

SinceK is finite and of characteristic p, then φ : a 7−→ ap is an automorphism
of K. Let L be the splitting field of f , then φ is also an automorphism of L.
Hence, there exists h(x) such that φ(h) = g.

Then for α ∈ L with f(α) = 0 also has h(α) = 0 as φ(h(α)) = φ(h)φ(α) =
g(αp) = f(α) = 0. Since h is of smaller degree than f , we get a contradiction
to the hypothesis that f is irreducible, or equivalently f is the minimal
polynomial of α.

Theorem 2.1. Let K be a field of characteristic zero or a finite field, let K ′
be an extension of finite degree n of K, and let C be an algebraically closed
field containing K. Then there exists exactly n distinct K-embeddings of K ′
into C.

Proof. Our assertion is true for any extension field K ′ of K which is of the
form K[α] with α ∈ K. In fact, the minimal polynomial mα of α over K is
then of degree n. It has n distinct roots α = x1, x2, . . . , xn in C.

For any i = 1, . . . , n, we have then a K-embedding σi : K ′ −→ C such that
σi(α) = xi. These are all the embeddings because according to the discussion
before Definition 2.1, if τ is an embedding different from the σi’s, then τ(α)
is also a root of the minimal polynomial mα. But mα is of degree n and has
α = x1, x2, . . . , xn as roots in C. Thus τ(α) = xi for some i, and therefore
τ = σi for some i = 1, 2, . . . , n.

We now prove the general case by induction on the degree of extension.

Let α ∈ K ′, K ⊂ K[α] ⊂ K ′ and put dimK(K[α]) = q. We may assume that
q > 1. By the above argument, there are exactly q distinct K-embeddings
σ1, . . . , σq of K[α] into C. As K[σi(α)] ∼= K[α], it is possible to construct an
extension K ′i of K[σi(α)] and an embedding τi : K ′ −→ K ′i, which extends
σi (result from Galois Theory).

Now, K[σi(α)] is a field of characteristic zero or a finite field. Note that
dimK[σi(α)](K

′
i) = dimK[α](K

′)= n
q
< n, the induction hypothesis implies

that there are exactly n
q
distinct K[σi(α)]-embeddings θij of K ′i into C.

Therefore the n composed mappings θij ◦ τi provide q.nq = n K-embeddings
of K ′ into C. They are distinct since, for i 6= i′, θij ◦ τi and θi′j ◦ τi′ differ on
K[α]. While, for i = i′ but j 6= j′, θij and θij′ differ on K ′i.

Now for any K-embeddings of K ′ into C, by taking its restriction to K[α], we
can see that all possible embeddings appear in this way. Hence this completes
the proof.
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Theorem 2.2. (theorem of the primitive element) Let K be a number
field of degree n. Then there exists an element θ ∈ K (called a primitive
element) such that K = Q[θ].

Proof. Since every algebraic extension of a field of characteristic zero is sepa-
rable, the number fieldK is separable over Q. Since dimQ(K) = n <∞, then
K over Q has finitely many intermediate fields, by considering the normal
closure of K and using the fundamental theorem of Galois theory.

Now, let {α1 . . . , αn} be a basis of K over Q, then K = Q(α1, . . . , αn). So
if we can show that any field extension generated by two elements is also
generated by one element, we will be done.

Suppose α, β ∈ K. As c ∈ Q varies, Q[α + cβ] varies over finitely many
intermediate subfields of K over Q. Hence, there are c1 6= c2 ∈ Q such that
Q[α+ c1β] = Q[α+ c2β] := L. Thus, (c1− c2)β ∈ L. Therefore β ∈ L. Hence
α ∈ L.

Thus, Q(α, β) = Q[α + c1β].

We proceed inductively to show that K = Q(α1, . . . , αn) = Q(α1 + c2α2 +
· · ·+ cnαn) for some ci ∈ Q.

Let K be an algebraic number field of degree n and σ1, . . . , σn the n distinct
embeddings of K into C. Let σi(K) = K(i) and for α ∈ K, σi(α) = α(i). The
fields K(1), . . . , K(n), called conjugate fields of K into C, and are again
number fields of degree n.

If K(i) ⊂ R then we call σi a real embedding and if K(i) 6⊂ R then we call σi
a complex embedding.

Remark 2.1. Complex embeddings of a number field K occur in pairs. For
this, let K be a number field of degree n. By Corollary 2.2, there exists
θ ∈ K such that K = Q[θ]. Let σi be an embedding of K into C such that
σi(K) 6⊂ R. Since σi(Q) = Q and σi(Q[θ]) 6⊂ R, implies σi(θ) = β /∈ R.
Now, β = θi for some 1 ≤ i ≤ n, where θi = σi(θ). Since β is a root of mθ,
then β̄ is also a root of mθ. This implies that there exists σ̄i, an embedding
of K into C, such that σ̄i(θ) = β̄. Since σj, 1 ≤ j ≤ n are all the distinct
isomorphisms, we get that σ̄i = σj for some 1 ≤ j ≤ n. Hence, σ̄i(K) = K(j)

for some 1 ≤ j ≤ n.

Let r1 be the number of real embeddings of K and let s denote the number
of complex embeddings of K. Hence n = r1 +s = r1 +2r2 for some r2 ∈ Z≥0.
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2.2 Norm and trace

Let K be an algebraic number field of degree n and {w1, w2, . . . , wn} be a
base of K over Q. For any α ∈ K, let Tα : K −→ K, x 7−→ α · x be a linear
map of vector spaces over Q.

Definition 2.2. For any α ∈ K, define trace of α to be the trace of the
linear operator Tα and denote it by TrK(α). Likewise, define norm of α to
be the determinant of the operator Tα and denote it by NK(α).

Since α,wj ∈ K, αwj ∈ K. So αwj =
n∑
i=1

aijwi, for every 1 ≤ j ≤ n and

aij ∈ Q. Let Aα = (aij). Then TrK(α) = Tr(Aα) and NK(α) = det(Aα).
Hence, TrK(α), NK(α) ∈ Q.

For α ∈ K, (αwj)
(k) = σk(αwj) = σk(α)σk(wj) = σk(

n∑
i=1

aijwi) =
n∑
i=1

aijw
(k)
i ,

for every j.

Let Ω = (w
(k)
j )k,j ∈ Mn(C) with (w

(k)
1 , . . . , w

(k)
n ) as its kth-row. We know

from Corollary 2.2 that there exists θ ∈ K such that K = Q[θ]. So,

Ω =


w

(1)
1 w

(1)
2 · · · w

(1)
n

w
(2)
1 w

(2)
2 · · · w

(2)
n

...
... . . . ...

w
(n)
1 w

(n)
2 · · · w

(n)
n

 =


1 θ(1) (θ(1))2 · · · (θ(1))n−1

1 θ(2) (θ(2))2 · · · (θ(2))n−1

...
...

... . . . ...
1 θ(n) (θ(n))2 · · · (θ(n))n−1


Now, Ω is a Vandermonde matrix. Then det Ω =

∏
1≤i<j≤n

(θ(j) − θ(i)). Since

i 6= j, implies θ(i) 6= θ(j). Hence det(Ω) 6= 0 and Ω is invertible.

Let

A0 = (α(i)δij) =


α(1) 0 · · · 0
0 α(2) · · · 0
...

... . . . ...
0 0 · · · α(n)


Then we have A0Ω = ΩAα. Since Ω is invertible inMn(C), A0 = ΩAαΩ−1.
Hence, Aα and A0 are similar matrices.

Thus, NK(α) = det(Aα) = det(A0) =
n∏
i=1

α(i) and
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TrK(α) = Tr(Aα) = Tr(A0) =
n∑
i=1

α(i).

If Aα corresponds to α ∈ K and Aβ to β ∈ K, then Aα +Aβ corresponds to
α + β and AαAβ corresponds to αβ.

Proposition 2.1. Let K be a number field of degree n and σ : K −→ C
varies over different embeddings of K into C, then we have

(i)TrK(x) =
∑
σ

σ(x),

(ii)NK(x) =
∏
σ

σ(x).

The proof of this proposition is clear from the discussions of this section.

The trace and norm in a tower of fields satisfies the following:

Corollary 2.1. (Transitivity of trace and norm) In a tower of finite field
extensions Q ⊂ K ⊂ L, one has

TrK/Q ◦ TrL/K = TrL/Q; NK/Q ◦NL/K = NL/Q.

Proof. Let m = dimK(L) and d = dimQ(K), as in the field diagram below.

L

K

Q

To prove the transitivity of trace, let {e1, . . . , em} be a K-base of L and
{f1, . . . , fd} be a Q-base of K. Then a Q-base of L is

{eifj
∣∣ 1 ≤ i ≤ m; 1 ≤ j ≤ d}

For α ∈ L, let

αej =
m∑
i=1

cijei, cijfs =
d∑
r=1

(bij)rsfr,
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for cij ∈ K and (bij)rs ∈ Q. Thus, α(ejfs) =
∑
i

∑
r

(bij)rseifr. Using the

above bases for L over K, K over Q and L over Q, we have the following
matrices

[Aα]L/K = (cij), [Aα]K/Q = ((bij)rs), [Aα]L/Q = ([Aα]K/Q),

where the field extension in the subscript indicates what extension is being
used for that matrix. Also, the last matrix is a block matrix. Using these
matrices,

TrK/Q(TrL/K(α)) = TrK/Q(
∑
i

cii) =
∑
i

TrK/Q(cii)

=
∑
i

∑
r

(bii)rr = TrL/Q(α).

A similar calculation holds for the norm.

Regular representation of K with respect to the base {w1, . . . , wn} of K
is the map φ : K −→Mn(Q), which takes α 7−→ Aα. φ is a homomorphism
of rings. If α, β ∈ K, then TrK(α + β) = TrK(α) + TrK(β) and NK(αβ) =
NK(α)NK(β).

Let α ∈ K be an algebraic number and mα = xm + a1x
m−1 + · · ·+ am ∈ Q[x]

be the minimal polynomial of α. Now, α is of degree m, and Q[α] has
{1, α, . . . , αm−1} as a base over Q.

Let Aα ∈Mm(Q) correspond to α in the regular representation of Q[α] with
respect to the base {1, α, . . . , αm−1} of Q[α] over Q. Let {β1, . . . , βl} be a
base of K considered as a vector space over Q[α].

An elaboration of the above corollary in the case of Q ⊂ Q[α] ⊂ K can be
seen as below.

dimQ(K) = dimQ[α](K) · dimQ(Q[α]) = l · m = n. Then {βiαj | 1 ≤ j ≤
m; 1 ≤ i ≤ n} forms a base for K over Q. Let Bα correspond to α in the
regular representation of K with respect to this Q-base. Then,

Bα =


Aα 0 · · · 0
0 Aα · · · 0
...

... . . . ...
0 0 · · · Aα

 ∈Mn(Q)
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So, TrK(Bα) = l · Tr(Aα) and NK(α) = det(Bα) = det(Aα)l. Also each Aα
is a m×m matrix as deg(α) = m. So, the matrix Aα gets repeated l many
times, where dimQ[α](K) = l.

Now suppose, α is an algebraic integer,then mα = xm + a1x
m−1 + · · ·+ am ∈

Z[x] is the minimal polynomial of α. Hence, the matrix of endomorphism
Tα : Q[α] −→ Q[α] is,

Aα =


0 0 · · · 0 −am
1 0 · · · 0 −am−1
...

... . . . ...
...

0 0 · · · 1 −a1


m×m

Hence, all the elements ofAα are in Z, hence Tr(Aα) and Tr(Bα) = l.T r(Aα) =
l · a1 are integers. Thus for an algebraic integer α ∈ K, TrK(α) ∈ Z. Simi-
larly, NK(α) = det(Bα) = det(Aα)l ∈ Z.

Let θ ∈ K be a primitive element. Then in the matrix,

Ω =


1 θ(1) (θ(1))2 · · · (θ(1))n−1

1 θ(2) (θ(2))2 · · · (θ(2))n−1

...
...

... . . . ...
1 θ(n) (θ(n))2 · · · (θ(n))n−1


the first row is {1, θ, . . . , θn−1}, which is a base for K over Q. Similarly,
{1, θ(2), . . . , (θ(2))n−1} is a base for σ2(K) = K(2) over Q, and the ith-row of
Ω is a base for K(i) over Q.

Example 2.2. Let K = Q[α], where α =
√

2. Then mα = x2−2 ∈ Z[x] and
{1,
√

2} is a base for K over Q.

Under the endomorphism Tα : Q[α] −→ Q[α], 1 7−→
√

2 and
√

2 7−→ 2.
Thus,

Aα =

(
0 2
1 0

)
Hence, TrK(α) = Tr(Aα) = 0 and NK(α) = det(Aα) = −2.

Example 2.3. Let K = Q[
√

2,
√

3] and let α =
√

2. Then, {1,
√

2,
√

3,
√

6}
forms a base for K over Q. Under the endomorphism Tα, 1 7−→

√
2;
√

2 7−→
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2;
√

3 7−→
√

6 and
√

6 7−→ 2
√

3. Then,

Aα =

(
0 2
1 0

)
and Bα =

(
Aα 0
0 Aα

)
=


0 2 0 0
1 0 0 0
0 0 0 2
0 0 1 0


Hence, TrK(α) = Tr(Bα) = 2.T r(Aα) = 0 and NK(α) = det(Bα) = det(Aα)2

= (−2)2 = 4.

For any a ∈ Q and α ∈ K, TrK(a · α) = a · TrK(α); TrK(a) = n · a;
NK(a) = an and NK(a · α) = an ·NK(α).

2.3 Integral base

Before defining an integral base of OK , we need a few results from linear
algebra on bilinear forms.

Definition 2.3. Let V be a vector space over a field K. By a K-linear
form or simply a linear form on V , we mean a linear transformation from
V to K.

Definition 2.4. Let V be a vector space over a field K. A bilinear form
B on V is a mapping B : V × V −→ K such that for any fixed y ∈ V ,
the mappings B′y, B′′y of V into K, defined by B′y(x) = B(x, y) and B′′y (x) =
B(y, x) respectively, are linear forms on V .

Definition 2.5. A bilinear form B(x, y) on V is non-degenerate if, for
any fixed y 6= 0 ∈ V , the linear form B′y 6= 0, i.e., B′y(x) = B(x, y) 6= 0 for
some x; and also the linear form B′′y 6= 0.

Let K be a number field of degree n and let α ∈ K. The mapping α 7−→
TrK(α) is a Q-linear mapping of K into Q. Define a bilinear form B(x, y) =
TrK(xy) for any x, y ∈ K, on the Q-vector space K.

Proposition 2.2. The bilinear form B(x, y) = TrK(xy) for x, y ∈ K is
non-degenerate.
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Proof. Let x 6= 0 ∈ K. Then B′′x(y) = B(y, x) = TrK(xy) 6= 0 as for y = x−1,
B′′x(y) = TrK(xy) = TrK(1) = n. Similarly, B′x(y) = B(x, y) 6= 0.

Let V be a vector space of dimension n over a field K. Then we have

Proposition 2.3. Let B(x, y) be a non-degenerate bilinear form on V . Then
for any base α1, α2, . . . , αn of V , there exists a base β1, . . . , βn of V such that
B(αi, βj) = δij for 1 ≤ i, j ≤ n, where δij denotes the Kronecker delta
function.

The proof of this proposition uses the dual space V ∗ of the vector space V
and Noether’s homomorphism theorem to come up with a dual base.

Noether’s homomorphism theorem states that, for f : R −→ S, be a surjec-
tive ring homomorphism, the following diagram is commutative:

R S

R/Kerf

g

f

∼=

where g : R −→ R/Kerf is the usual map.

Proposition 2.4. Let M be a finitely-generated Z-module and let α1, α2, . . . ,
αn be a system of generators of Z-module M . Let N be a submodule of M .
Then, there exist β1, β2, . . . , βm, (m ≤ n) in N that generate N over Z and
have the following form,

βi =
∑
i≤j

kijαj

with kij ∈ Z; kii ≥ 0 and 1 ≤ i ≤ m.

The proof of this proposition is by induction on the rank n of M as a Z-
module. The implication of this proposition will prove crucial in finding an
integral base and the norm of an ideal.

Now, let K be a number field of degree n.

Corollary 2.2. For any Q-base w1, w2, . . . , wn of K, there exists a base
w′1, w

′
2, . . . , w

′
n of K such that TrK(wi, w

′
j) = δij.
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Theorem 2.3. Let K a number field of degree n and OK be the ring of
algebraic integers in K. Then there exist a Q-base β1, · · · , βn of K such that
βi ∈ OK and OK = Zβ1 + Zβ2 + · · ·+ Zβn.

Proof. Let w1, w2, · · · , wn be a Q-base of K. Then there exists m 6= 0 ∈ Z
such that mw1,mw2, · · · ,mwn ∈ OK .

So without loss of generality, we can assume that w1, w2, · · · , wn ∈ OK .

Let w′1, w′2, . . . , w′n of K for which TrK(wi, w
′
j) = δij for all i, j. We know, for

any z ∈ OK , z =
n∑
i=1

aiw
′
j, where ai ∈ Q.

Since zwi ∈ OK ,the TrK(zwi) ∈ Z. Hence, TrK(zwi) = ai ∈ Z. Thus,
OK ⊂ Zw′1 + Zw′2 + · · · + Zw′n. By the previous proposition, there exist
β1, β2, . . . , βm ∈ OK , (m ≤ n); such that OK = Zβ1 + · · ·+ Zβm.

Claim : m = n

Proof : The Q-linear span, LQ(β1, β2, . . . , βm) ⊂ K. Also, any α ∈ K is of

the form α =
n∑
i=1

biwi, where bi ∈ Q. But each wi ∈ OK and thus can be

written as a Z-linear combination of βi’s.

Hence, K ⊂ LQ(β1, β2, . . . , βm). This implies, n = dimQ(K) ≤ m ≤ n.
Hence, m = n. Also, β1, β2, . . . , βn are Q-linearly independent and thus, the
sum OK = Zβ1 + · · ·+ Zβn, is a direct sum.

Further, any set of elements β1, β2, . . . , βn as above, forms a Q-base of K.

Definition 2.6. The set {β1, β2, · · · , βn}, with β1, β2, · · · , βn as above are
said to be an integral base of OK.

Example 2.4. Referring to Theorem 1.2, let K be a quadratic field and let
OK be its ring of integers. Then

OK =

{
Z + Z

(
1+
√
m

2
), if m ≡ 1 (mod 4)

Z + Z(
√
m), if m ≡ 2, 3 (mod 4)

The {1, 1+
√
m

2
} and {1,

√
m} forms an integral base for K = Q[

√
m] when

m ≡ 1 (mod 4) and m ≡ 2, 3 (mod 4), respectively.
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Definition 2.7. Any ideal I of the ring of integers OK of a number field K
is called an integral ideal.

Remark 2.2. Let I be any non-zero integral ideal in K. Then I ∩Z 6= {0}.

Proof. If α 6= 0 ∈ I and if αr + a1α
r−1 + · · · + ar = 0, where ai ∈ Z and

ar 6= 0, because for any α ∈ OK , the minimal polynomial mα of α always
has a constant term. Then ar = −α(ar−1 + · · · + αr−1) ∈ Z. Thus, for any
α ∈ K, there exists a 6= 0 ∈ Z such that a · α ∈ I.

If β1, β2, . . . , βn are as in the theorem, then Proposition 2.4 tells us that
for any integral ideal I, there exist α1, α2, . . . , αm ∈ I, (m ≤ n); such that
I = Zα1 + · · ·+ Zαm. As in the Theorem 2.3, we must have m = n. The αi
are said to be an integral base of I. Further, we may choose the αi so that
αi =

∑
j≥i

pijβj, where pij ∈ Z.

Remark 2.3. As in the Theorem 2.3, any elements α1, α2, . . . , αn such that
I = Zα1 + · · · + Zαn, form a Q-base of K. In particular, any non-zero
ideal of I contains n elements which are linearly independent over Q. Also
if αi =

∑
j≥i

pijβj, then pii 6= 0. Let P = (pij). This forms the change of basis

matrix. Any any change of basis matrix is invertible, which implies pii 6= 0
and hence without loss of generality can be taken to be > 0.

Remark 2.4. If I 6= {0} is an ideal of OK , then there exists a non-zero
a ∈ Z such that aOK ⊂ I ⊂ OK . Now if, OK = Zβ1 + · · · + Zβn, then
aOK = Zaβ1 + · · ·+Zaβn so that OK

aOK
is of order an. Therefore, OK

I
is finite.

The a in this remark is an uniform a for the whole of OK . To find this a,
consider the βi as above. Now for each i, there exists mi 6= 0 ∈ Z such that

miβi ∈ I. Since, OK = Zβ1 + · · ·+Zβn, then for any α ∈ OK , a =
n∏
i=1

mi 6= 0

is such that aα ∈ I, i.e., aOK ⊂ I ⊂ OK .

Also, consider only Zβ1 and Zaβ1. Now for any k ∈ Zβ1

Zaβ1
means there exists

0 ≤ l < a such that k = lβ1 + Zaβ1, implies l has a choices. Hence,
∣∣∣ OKaOK

∣∣∣ =

an.
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Remark 2.5. If J is a prime ideal in OK , then J contains exactly one
prime number p > 0 of Z. For this let a = p1p2 . . . pk in J ∩ Z with primes
p1, . . . , pk ∈ Z. Since J is a prime ideal, at least one pi ∈ J . If p, q are
distinct primes in J , then by Bezout’s identity, there exists x, y ∈ Z such
that px+ qy = 1 ∈ J , which implies J = OK . This is a contradiction to the
choice of J .

2.4 Discriminant

Before we define the discriminant of a number field, we’ll define it for the
general case of rings.

Let B be a ring and let A be a subring of B such that B is a free A-module
of finite rank n (for example, A can be a field and B a finite extension of
degree n of A). For x ∈ B, multiplication Tx by x, (i.e., y 7→ xy) is an
endomorphism of the A-module B.

We call trace (respectively, norm) of x ∈ B, relative to B and A, the trace
(respectively, determinant) of the endomorphism Tx of multiplication by x.

The trace (respectively, norm) of x is denoted by TrB/A(x). They are ele-
ments of A.

Definition 2.8. Let B be a ring and let A be a subring of B such that B
is a free A-module of finite rank n. For {x1, x2, . . . , xn} ⊂ B be any set of
n elements in B. We call D(x1, x2, . . . , xn) = det(TrB/A(xixj)) ∈ A as the
discriminant of {x1, x2, . . . , xn}.

Proposition 2.5. If {y1, y2, . . . , yn} ⊂ B is another set of elements of B

such that yi =
n∑
j=1

aijxj with aij ∈ A, then

D(y1, y2, . . . , yn) = (det(aij))
2D(x1, x2, . . . , xn).

Proof. Tr(ypyq) = Tr(
∑
i

apixi
∑
j

aqjxj) = Tr(
∑
i

∑
j

apiaqjxiyj)

=
∑
i,j

apiaqjTr(xixj), since trace is a linear map.

So, the matrix equation is

(Tr(ypyq))n×n = (api)n×n(Tr(xixj))n×n(aqj)
T
n×n
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Applying det on the above matrix equation,

D(y1, y2, . . . , yn) = det(A.Tr(xixj).A
T ) = (detA)2.D(x1, x2, . . . , xn).

Proposition 2.5 implies that the matrix (aij) which expresses one base in
terms of another, has an inverse with entries in A. Therefore, both det(aij)
and det(aij)−1 are units in A.

Definition 2.9. Let B be a ring and let A be a subring of B such that B is
a free A-module of finite rank n. Define discriminant of B over A as,

DB/A := principal ideal generated by discriminant of any base of B over A.

Proposition 2.6. Suppose that DB/A contains an element which is not a
zero-divisor. Then, {x1, . . . , xn} ⊂ B is a base for B over A if and only if
D(x1, . . . , xn) generates DB/A.

Proof. (⇒:) By definition of DB/A.

(:⇐) Let {x1, x2, . . . , xn} ⊂ B, d = D(x1, x2, . . . , xn) be such that DB/A =
D(x1, x2, . . . , xn) ·A = d ·A. Let {e1, e2, . . . , en} be a base of B over A. Put

d′ = D(e1, e2, . . . , en) and xi =
n∑
j=1

aijej with aij ∈ A for every i, j.

Then, d = (det(aij))
2 · d′ by Proposition 2.5. By hypothesis, d ·A = DB/A =

d′ · A, which implies there exists a non-zero b ∈ A such that d′ = b · d.

Thus, d(1 − b(det(aij))
2 = 0. We know that d is not a zero-divisor, since

otherwise every element of d · A = DB/A will be a zero-divisor.

Hence, 1− b.det(aij)2 = 0, which implies det(aij)2 = 1
b
6= 0.

If det(aij) = k, then k2 = 1
b
and k2, b ∈ A are units, implying k is also an

unit in A, i.e., det(aij) is invertible in A. Consequently, {x1, x2, . . . , xn} is a
base for B over A.

Lemma 2.3. (lemma of Dedekind) Let G be a group, C a field, and let
σ1, . . . , σn be distinct homomorphisms of G into the multiplicative group C∗.
Then the σi’s are linearly independent over C, i.e.,

∑
uiσi(g) = 0 for every

g ∈ G implies that ui = 0 for every i.
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Proof. Suppose that the σi’s are linearly dependent. Consider a non-trivial
relation

∑
i

uiσi = 0 and ui ∈ C, such that the number q of the ui’s which

are non-zero, is minimum. This means that any zero linear combination of
σi’s with less than q summands will have all the coefficients equal to zero.

After renumbering, we may suppose that

u1σ1(g) + u2σ2(g) + · · ·+ uqσq(g) = 0, for every g ∈ G. (2.1)

We have q ≥ 2 since the σi’s are not zero. For g, h ∈ G, we see that

u1σ1(hg) + u2σ2(hg) + · · ·+ uqσq(hg) (2.2)

= u1σ1(h)σ1(g) + u2σ2(h)σ2(g) + · · ·+ uqσq(h)σq(g) = 0.

Multiplying equation (2.1) by σ1(h) and subtracting from equation (2.2) it
follows that

u2(σ1(h)− σ2(h))σ2(g) + · · ·+ uq(σ1(h)− σq(h))σq(g) = 0.

This holds for every g ∈ G and since q has been chosen as small as possible,
we get that

u2(σ1(h)− σ2(h)) = 0;which implies σ1(h) = σ2(h); for every h ∈ G.

But this contradicts the fact that σi’s are all distinct.

Proposition 2.7. Let K be a number field of degree n and let σ1, σ2 . . . , σn
be the n distinct embeddings of K into C. Then, if {x1, . . . , xn} is a base for
K over Q, then

D(x1, . . . , xn) = det(σi(xj))
2 6= 0.

Proof. D(x1, . . . , xn) = det(Tr(xixj)) = det(
∑
k

σk(xixj)) = det(
∑
k

σk(xi)σk(xj))

= det(BBT ) = det(B) · det(BT ) = det(B)2 = det(σk(xi))
2, where

B = (σk(xi))n×n.

It remains to show that det(B) 6= 0.

Suppose that det(B) = 0. Let TB be the linear transformation associated to
the matrix B. Then TB is not injective, i.e., the Nullity(TB) > 0. Hence,
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there exists a non-trivial vector u = (u1, u2, . . . , un) ∈ Cn such that B ·u = 0,

i.e.,
n∑
i=1

uiσi(xj) = 0, for every j.

By linearity,
n∑
i=1

uiσi(x) = 0 for every x ∈ K. This contradicts the lemma of

Dedekind.

2.4.1 Discriminant of quadratic fields

Let K be a quadratic number field and let OK be its ring of integers.

Definition 2.10. Let I be an integral ideal and {α1, α2} be an integral base
of I. Define discriminant of I = 4(I) = 4(α1, α2) = (α1α

′
2−α′1α2)2, i.e.,

the square of the det
( α1 α2

α′1 α′2

)
.

From the first proposition of previous section, it is clear that the above
definition is independent of integral base.

If I = OK , we write d = dK = 4(OK) and call it the discriminant of the
field K = Q[

√
m]. Then,

dK =

{
m, if m ≡ 1 (mod 4)

4m, if m ≡ 2, 3 (mod 4)

Proposition 2.8. For a quadratic field K with discriminant d, we have
K = Q[

√
d] and further {1, d+

√
d

2
} is an integral base of the ring OK of

algebraic integers in K.

The proof of this proposition is immediate from the calculations of Theorem
1.2.

Corollary 2.3. The discriminant uniquely determines a quadratic field.
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2.5 Cyclotomic fields

Definition 2.11. Any number field generated over Q by roots of unity is
called a cyclotomic field.

Given a prime p ∈ Z, let ζ = ζp be a primitive p − th root of unity. ζ is a
root of the polynomial Xp−1. Since ζ 6= 1, it is also a root of the cyclotomic
polynomial Xp−1

X−1
= Xp−1 + · · ·+X + 1.

To show that the cyclotomic polynomial is irreducible over Q, we’ll use Eisen-
stein’s irreducibility criterion. Recall Eisenstein’s irreducibility criterion, for
a principal ideal domain A, a prime p in A and F (X) = Xn + an−1X

n−1 +
· · · + a1X + a0 ∈ A[X] such that p|ai, for 0 ≤ i ≤ n − 1 and p2 6 |a0, then
F (X) is irreducible over the field of fractions of A.

Theorem 2.4. For any prime number p ∈ Z, the cyclotomic polynomial
Xp−1 +Xp−2 + · · ·+ x+ 1 is irreducible in Q[X].

Proof. Substitute X = Y + 1. Then,

Xp−1+· · ·+X+1 =
Xp − 1

X − 1
=

(Y + 1)p − 1

Y
=

p−1∑
j=1

(
p

j

)
yj−1+Y p−1 = F1(Y ).

If F1(Y ) is irreducible, then so is the cyclotomic polynomial. Observe that,
p divides each of the binomial coefficients

(
p
j

)
and that p2 does not divide the

constant term.

Therefore, by Eisenstein’s irreducibility criterion, F1(Y ) is irreducible.

The previous theorem implies that Q[ζ] is of the degree p− 1 over Q. Thus
{1, ζ, . . . , ζp−2} is a base for Q[ζ] over Q. The aim of this section is to show
that the ring of integers of the cyclotomic field Q[ζ] is Z[ζ]. First we need to
calculate some norms and traces.

The conjugates of ζ are ζj, where 1 ≤ j ≤ p − 1. The irreducibility of the
cyclotomic polynomial implies that Tr(ζj) = −1 for j = 1, 2, . . . , p− 1. Also
note that Tr(1) = p− 1.

Thus, Tr(1− ζ) = Tr(1− ζ2) = · · · = Tr(1− ζp−1) = p. While, N(ζ − 1) =
(−1)p−1p. So, N(1− ζ) = p. But, N(1− ζ) is a product of the conjugates of
(1− ζ), hence

p = (1− ζ)(1− ζ2) . . . (1− ζp−1). (2.3)
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Let OK be the ring of integers in K = Q[ζ]. So, OK contains ζ and its
powers.

Claim 1: (1− ζ)OK ∩ Z = pZ.

Proof of Claim 1: From equation 2.3, p ∈ (1 − ζ)OK . Thus, pZ ⊂ (1 −
ζ)OK ∩ Z.

Now suppose (1 − ζ)OK ∩ Z 6= pZ. Since pZ is a maximal ideal in Z,
(1− ζ)OK ∩ Z = Z, i.e. (1− ζ) is a unit in OK .

So, the conjugates (1− ζj) of (1− ζ) are also units in OK . Thus, from (??),
p is also a unit in Z ∩ OK . This is a contradiction.

Therefore, (1− ζ)OK ∩ Z = pZ.

Claim 2: For any y ∈ OK, Tr(y(1− ζ)) ∈ pZ.

Proof of Claim 2: Each conjugate yj(1− ζj) of y(1− ζ) is a multiple (in OK)
of (1− ζj), which itself is a multiple of (1− ζ).

Since trace is the sum of the conjugates, we have, Tr(y(1− ζ)) ∈ (1− ζ)OK .
Also, the trace of an algebraic integer ∈ Z.

Therefore, Tr(y(1− ζ)) ∈ (1− ζ)OK ∩ Z = pZ.

Theorem 2.5. Let p ∈ Z, a prime and ζ a primitive p− th root of unity in
C. Then the ring OK of integers of the cyclotomic field K = Q[ζ] is Z[ζ],
and {1, ζ, . . . , ζp−2} is a base for OK as a Z-module.

Proof. Let x = a0 + a1ζ + · · · + ap−2ζ
p−2, where ai ∈ Q, be an element in

OK . Then,

x(1− ζ) = a0(1− ζ) + · · ·+ ap−2(ζp−2 − ζp−1).

Taking traces and making use of the previous discussion in this section, we
obtain, Tr(x(1− ζ)) = a0Tr(1− ζ) = a0p.

So, pa0 ∈ pZ and thus, a0 ∈ Z. Also ζ−1 = ζp−1 implies ζ−1 ∈ OK . So,

(x− a0)ζ−1 = a1 + a2ζ + · · ·+ ap−2ζ
p−3 ∈ OK .

By the same argument as before, a1 ∈ Z.

Applying the same argument successively, we conclude that each ai ∈ Z.
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Remark 2.6. The results of this section extend to the case of cyclotomic
fields Q[t], where t is a primitive pr − th root of unity (p- prime). Such a
field is of degree pr−1(p − 1), and its ring of integers is Z[t]. The minimal
polynomial of t over Q is

Xpr − 1

Xpr−1 − 1
= Xpr−1(p−1) + · · ·+Xpr−1

+ 1.

2.5.1 Discriminant of a cyclotomic field

Let p be an odd prime and let ζ be a primitive p − th root of unity. Let
K = Q[ζ] be the p − th cyclotomic field and denote the conjugates of ζ by
ζ = ζ1, ζ2, . . . , ζp−1. So we have

F (X) =
Xp − 1

X − 1
=

p−1∏
i=1

(X − ζi).

The discriminant can be computed (using the integral base {1, ζ, . . . , ζp−2})
as follows:

D(1, ζ, . . . , ζp−2) = det(σl(ζ
k))2 =

∏
i<j

(σi(ζ)− σj(ζ))2 =
∏
i<j

(ζi − ζj)2,

as it is the determinant of a Vandermonde matrix. So we have

D(1, ζ, . . . , ζp−2) = (−1)
p−1

2

∏
i 6=j

(ζi − ζj).

Note that
F ′(X) =

∑
i

∏
i 6=j

(X − ζj),

so, ∏
i 6=j

(ζi − ζj) =
∏
i

F ′(ζi) = NK/Q(F ′(ζ)).

To compute this norm, we take the derivative on both sides of (X−1)F (X) =
Xp − 1. Substitute X = ζ and take norm to get

N(ζ − 1)N(F ′(ζ)) = N(pζp−1) = N(p)N(ζp−1) = pp−1.

The norm N(ζ − 1) is given by

N(ζ − 1) =
∏
i

(ζi − 1) =
∏
i

(1− ζi) = p.

Thus, D(1, ζ, . . . , ζp−2) = (−1)
p−1

2 pp−2.
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Chapter 3

Fractional ideals and Dedekind’s
theorem

3.1 Norm of an ideal and fractional ideals

Let K be a number field of degree n and let OK be its ring of integers.

Definition 3.1. For any ideal I 6= {0} of OK, the number of elements in
the residue class ring OK/I is called the norm of I, denoted by N(I).

If I = {0}, then N(I) = 0. Clearly, N(OK) = 1. For a proper ideal I,
N(I) > 1.

Proposition 3.1. Let I be a non-zero integral ideal and let OK = Zβ1 +
· · · + Zβn. Then there exist αi =

∑
j≥i

pijβj, where pij ∈ Z and pii > 0 such

that I = Zα1 + · · ·+ Zαn. Also, N(I) =
n∏
i=1

pii.

Proof. By remarks of Chapter 2, Section 3, I has an integral base {α1, α2, . . . , αn}
of the required form. Let η = η(x1, . . . , xn) =

n∑
i=1

xiβi, 0 ≤ xi < pii, xi ∈ Z.

Claim : The set S = {η(x1, . . . , xn)|0 ≤ xi < pii} of p11p22 . . . pnn many
elements form a complete system of residues of OK modulo I.

39
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Proof of the claim : If ζ =
n∑
i=1

ciβi = c1β1 + · · ·+ cnβn ∈ OK , ci ∈ Z and we

set Oi := OK ∩ (Zβi+1 + · · ·+ Zβn). Now, α1 = p11β1 + p12β2 + · · ·+ p1nβn.
By division algorithm, write c1 = m1p11 + x1 such that 0 ≤ x1 < p11. So,
ζ1 = ζ − x1β1 − m1α1 ∈ O1. We can, in the same way find m2 ∈ Z,
0 ≤ x2 < p22 with

ζ2 = ζ1 − x2β2 −m2α2 ∈ O2.

Continuing this way, we find ζ =
n∑
i=1

(miαi + xiβi), where mi ∈ Z and 0 ≤

xi < pii. So, S generates OK/I. This completes the proof of the claim.

Now we want to show that the η ∈ S are all distinct modulo I. So, let
n∑
i=1

xiβi =
n∑
i=1

yiβi ∈ OK/I and 0 ≤ xi, yi < pii. This implies

n∑
i=1

(xi − yi)βi ∈ I.

Now since I = 〈α1, . . . , αn〉, we have

n∑
i=1

(xi − yi)βi =
n∑
i=1

kiαi, where ki ∈ Z.

Also,

α1 = p11β1 + p12β2 + · · ·+ p1nβn

α2 = p22β2 + · · ·+ p2nβn
...

αn = pnnβn

So, k1α1 + · · · + knαn = k1(p11β1 + · · · + p1nβn) + · · · + kn(pnnβn). So,
x1 − y1 = k1p11. This implies, p11|x1 − y1. Now, 0 ≤ x1, y1 < p11 implies
x1 − y1 < p1. Hence, x1 − y1 = 0, i.e., k1 = 0 (since p11 6= 0). Similarly,
ki = 0 for every 1 ≤ i ≤ n and xi = yi. This completes the proof.

Lemma 3.1. Let K be a number field of degree n and let α 6= 0 ∈ OK. Then
N(〈α〉) = |NK(α)|.

Proof. If OK = Zβ1 + · · ·+Zβn, then by the previous proposition, there exist
αi =

∑
j≥i

pijβj, where pij ∈ Z and pii > 0 such that 〈α〉 = Zα1 + · · · + Zαn.
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Also, N(〈α〉) =
n∏
i=1

pii. Since 〈α〉 = Zαβ1 + · · ·+ Zαβn, we can write

αβi =
n∑
j=1

rijαj, 1 ≤ i ≤ n.

Let R = (rij), then R is a base change matrix and hence invertible i.e. det(R)
is an invertible integer, in other words det(R) = ±1. Also, P = (pij) is an
upper triangular matrix and det(P ) is product of the diagonal entries.

Now,
αj =

∑
k≥j

pjkβk

implies,

αβi =
n∑
j=1

rij
∑
k≥j

pjkβk.

Taking regular representation of α with respect to the base β1, . . . , βn, we
have

NK(α) = det(RP ) = det(R)× det(P ) = ±det(P ).

But,

±det(P ) = ±
n∏
i=1

pii = ±N(〈α〉)

Thus, N(〈α〉) = |NK(α)|.

Definition 3.2. By a fractional ideal in K we mean an OK-submodule I
of K for which there exists m 6= 0 ∈ Z such that mI ⊂ OK.

Any ideal in OK is trivially a fractional ideal. For any ideal L in OK and for
any b 6= 0 ∈ Z, b−1L is a fractional ideal in K. Any ideal in OK is called an
integral ideal in K.

Any fractional ideal I can be written as a−1J , for a 6= 0 ∈ Z and an integral
ideal J . If I, J are fractional ideals in K, then for a suitable c ∈ Z, c 6= 0,
cI and cJ are both integral ideals and the sum I + J and product I · J are
therefore fractional ideals in K.
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3.2 Dedekind domain

Definition 3.3. An integral domain A is said to be integrally closed if its
integral closure in its field of fractions Q(A) is A itself, i.e., if x ∈ Q(A) is
an integral element over A, then x ∈ A.

Example 3.1. Any principal ideal domain is integrally closed.

Definition 3.4. An integral domain A is called a Dedekind domain if it
is Noetherian, integrally closed, and if every non-zero prime ideal of A is
maximal.

We recall that a ring R is called Noetherian if it satisfies any of the following
three equivalent conditions:

(N1) If I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ In+1 ⊂ · · · is an increasing sequence of ideals
in R, then there exists m0 ∈ N such that Im = Im+1 for every m ≥ m0.

(N2) Any non-empty set S of ideals of R contains a maximal element, i.e.,
an ideal I ∈ S such that I 6⊂ J for any J ∈ S.

(N3) Any ideal I in R is finitely generated.

The ring Z, and more generally any principal ideal ring is a Dedekind domain.

Claim: The ring of integers OK of a number field K is a Dedekind domain.

(D1) Every non-zero prime ideal of OK is maximal.

Let I be a prime ideal in OK , then OK/I is an integral domain. Now,
N(I) < ∞, i.e.,

∣∣OK/I∣∣ < ∞. Hence OK/I is a field, as any finite integral
domain is a field, implying I is a maximal ideal.

(D2) OK is integrally closed.

We know, any number field is a subfield of C. We have also seen that α ∈ C
is integral over OK if and only if there exists a non-zero finitely-generated
OK-module M ⊂ C with αM ⊂M .

So, M is finitely-generated over OK and moreover, OK is finitely-generated
over Z. Hence, M is finitely-generated over Z. Thus α is integral over Z and
hence lies in OK .

(D3) OK is Noetherian.
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We know that, if A is a Noetherian ring and f : A −→ B makes B an
A-algebra so that B is a finitely-generated A-module under multiplication
a · b := f(a)b, then B is a Noetherian ring. Hence, OK is Noetherian.

Interest in Dedekind domains arises from the fact that the ring of integers
of a number field is a Dedekind domain, but not always a principal ideal
domain.

Example 3.2. Consider the ring of integer OK = Z[
√
−5] in K = Q[

√
−5].

Observe that
(1 +

√
−5)(1−

√
−5) = 2 · 3.

The norms of the four factors are, respectively, 6, 6, 4, and 9.

Note that 1 +
√
−5 can have no non-trivial divisor in OK , since the norm of

such a divisor would have to be a non-trivial divisor of 6. This is impossible,
because the equations a2 + 5b2 = 2 and a2 + 5b2 = 3 have no solutions in Z.

If OK were principal, the prime element 1 +
√
−5, which divides the product

2 · 3, would have to divide either 2 or 3. But then, taking norms, we see that
6 would divide 4 or 9, which is not the case. Moreover, this example shows
that for K = Q[

√
−5], OK is not an UFD as well.

3.3 Unique factorisation of ideals

This brings us to the fundamental theorem of Dedekind, which says that
even though we might not have unique factorisation of elements in the ring of
integers of a number field, but we will nevertheless have unique factorisation
of ideals.

Theorem 3.1 (Dedekind). Any ideal of the ring OK of algebraic integers
in a number field K can be written as the product of prime ideals in OK,
determined uniquely up to order.

We need a few lemmas before we prove the theorem.

Lemma 3.2. Any proper ideal I ⊂ OK contains a product of prime ideals in
OK.

Proof. Let S = {I ⊂ OK |I does not contain a product of prime ideals}. Sup-
pose S 6= φ, then S contains a maximal element, say I0. Clearly, I0 cannot
be prime, i.e., there exists x1, x2 ∈ OK such that x1x2 ∈ I0 but x1, x2 /∈ I0.
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Let Ii (i = 1, 2) be the ideal generated by I0 and xi. Then I0 ( I1 and
I0 ( I2. By the maximality of I0 in S, Ii /∈ S.

Hence, I1 ⊃ P1P2 . . . Pr and I2 ⊃ Q1Q2 . . . Qs, where P1, . . . , Pr, Q1, . . . , Qs

are prime ideals in OK . Since I1I2 ⊂ I0, we have P1 . . . PrQ1 . . . Qs ⊂ I0.
This is a contradiction. Therefore, S = φ.

Lemma 3.3. Any non-zero prime ideal P ⊂ OK is invertible, i.e., there
exists a fractional ideal P−1 in K such that PP−1 = OK.

Proof. Let P be a non-zero prime ideal in OK . Let P−1 be the set {x ∈
K|xP ⊂ OK}. It is easy to see that P−1 is an OK-module with OK ⊂ P−1.

Since there exists n 6= 0 ∈ Z ∩ P , we have nP−1 ⊂ PP−1 ⊂ OK . Hence
P−1 is a fractional ideal in K. Now, P ⊂ PP−1 ⊂ OK . Since P is maximal,
either PP−1 = OK or P = PP−1.

If PP−1 = OK , then we are done. If P = PP−1, then every x ∈ P−1 satisfies
xP ⊂ P . We know P is a finitely-generated Z-module, implying x ∈ OK .
This implies P−1 ⊂ OK , i.e., P−1 = OK . We will show that P−1 = OK is
not possible.

Let x ∈ P , then xOK 6= OK , because x is a non-unit, i.e., xOK is a proper in-
tegral ideal and by the previous lemma, there exist prime ideals P1, P2, . . . , Pr
in OK such that P1P2 . . . Pr ⊂ xOK .

Let r be chosen such that xOK doesn’t contain a product of r−1 prime ideals
in OK . Such an r can be chosen because if it does not exist, then we can
keep reducing the number of prime ideals in the product and end up getting
an empty product inside xOK , i.e., OK ⊂ xOK , which is a contradiction.

Now, P ⊃ xOK ⊃ P1P2 . . . Pr. So P divides one of the Pi, say P1, i.e.,
P1 ⊂ P . But P = P1. Now, P2P3 . . . Pr 6⊂ xOK . Hence, there exists
b ∈ P2P3 . . . Pr and b /∈ xOK , implying x−1b /∈ OK .

But bx−1P ⊂ P2P3 . . . Pr(x
−1OK)P = x−1OKP1P2P3 . . . Pr ⊂ x−1OK ·xOK =

OK . Thus, bx−1 ∈ P−1 = OK . This is a contradiction. Hence, P−1 6= OK .
Thus, PP−1 = OK .

Proof of Dedekind’s theorem. We will deal with the case of proper integral
ideals only, because the ideal OK can be written as an empty product of
prime ideals in OK .

(i) Existence of a factorisation:



3.3. UNIQUE FACTORISATION OF IDEALS 45

Let S be the set of proper ideals of OK , which cannot be factorised into
prime ideals. Suppose S 6= φ, then by property (N2), S contains a maximal
ideal, say I0 ⊂ OK . This implies I0 is not prime.

Property (N3) implies that there exists a prime ideal P ⊂ OK such that
I0 ⊂ P . Also, lemma 3.3 tells us that there exists a fractional ideal P−1 in
K such that PP−1 = OK .

Therefore, I0P
−1 ⊂ PP−1 = OK . But if I0P

−1 = P1P2 . . . Pr, for prime
ideals Pi in OK , then I0 = PP1P2 . . . Pr. This is a contradiction. Hence,
I0P

−1 ∈ S. But this contradicts the maximality of I0. Thus, S = φ.

(ii) Uniqueness of factorisation:

Let I be a proper ideal in OK and

I = P1P2 . . . Pr = Q1Q2 . . . Qs

where Pi, Qj are all prime ideals in OK . Since Q1|
r∏
i=1

Pi, this implies Q1|Pi
for some 1 ≤ i ≤ r. Say Q1|P1. But Q1, P1 are both maximal. Hence,
Q1 = P1. Now by lemma 3.3,

Q−1
1 I = Q−1

1 Q1Q2 . . . Qs = Q2Q3 . . . Qs

Q−1
1 I = P−1

1 P1P2 . . . Pr = P2P3 . . . Pr

Thus, Q2Q3 . . . Qs = P2P3 . . . Pr. By repeating the arguments above, in
finitely many steps, we can thus prove that r = s, and the factorisation is
unique up to order.

Corollary 3.1. Any fractional ideal I in K can be uniquely written in the
form

I =
Q1Q2 . . . Qs

P1P2 . . . Pr

where Qi, Pj are prime and Qi 6= Pj for every i, j.

Proof. Choose c 6= 0 ∈ Z such that cI ⊂ OK . So, there exists an integral
ideal J such that J = cI. Now, as c ∈ Z ⊂ OK , 〈c〉 is proper ideal of OK .

Write 〈c〉 = P1P2 . . . Pr and J = Q1Q2 . . . Qs′ . If any Qi = Pj, then cancel
them by multiplying with their inverse ideal, viz., Q−1

i .
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Corollary 3.2. Given any fractional ideal I 6= {0} in K there exists a
fractional ideal I−1 such that I · I−1 = OK.

Proof. Since I is a fractional ideal in K, there exists c 6= 0 ∈ Z such that
cI ⊂ OK . So, J = cI is an integral ideal. Hence, J = P1P2 . . . Pr, where Pi’s
are prime.

Now each Pi has an inverse P−1
i inK such that PiP−1

i = OK . So, P−1
1 . . . P−1

r J
= OK . Hence, c · P−1

1 P−1
2 . . . P−1

r I = OK . Take c · P−1
1 P−1

2 . . . P−1
r = I−1.

Now, I−1 is an OK-submodule of K.

To show I−1 is a fractional ideal, we need to find m 6= 0 ∈ Z such that
mI−1 ⊂ OK . Since each P−1

i is a fractional ideal inK, there existmi 6= 0 ∈ Z

such that miP
−1
i ⊂ OK . Then m =

r∏
i=1

mi ∈ Z is as required.

Remark 3.1. Let I = P a1
1 . . . P ar

r ; J = P b1
1 . . . P br

r be integral ideals. P1, . . . , Pr
are prime ideals and ai, bj ∈ Z≥0, where P 0

i = OK . Then the gcd(I, J) :=
P c1

1 . . . P cr
r , where ci = min(ai, bi) and lcm(I, J) = P d1

1 . . . P dr
r , where di =

max(ai, bi) for 1 ≤ i ≤ r.

By definition of lcm, I|lcm(I, J) and J |lcm(I, J). Hence, lcm(I, J) ⊂ I, J .
Thus, lcm(I, J) ⊂ I ∩ J . Also, I ∩ J = P e1

1 . . . P er
r , where ei ≥ di, for every

i, implying I ∩ J ⊂ lcm(I, J). Therefore, lcm(I, J) = I ∩ J = P d1
1 . . . P dr

r ,
where di = max(ai, bi).

Further, gcd(I, J) = smallest ideal dividing I and J = I + J .

We know, I ⊂ I + J and J ⊂ I + J , then I + J is a divisor of both I and J .
Now let K be any divisor of I and J . Hence,I, J ⊂ K, i.e, I + J ⊂ K, i.e.,
K|(I + J). Therefore, I + J is the gcd of I and J .

Lemma 3.4. For any two integral ideals I and J , there exists a w ∈ OK
such that gcd(IJ, 〈w〉) = I.

Proof. Let I = P a1
1 . . . P ar

r , J = P b1
1 . . . P br

r , where ai, bi ∈ Z≥0 and P1, . . . , Pr
are all prime ideals dividing I and J .

We can find an element πi ∈ P a1+1
1 . . . P

ai−1+1
i−1 P ai

i P
ai+1+1
i+1 . . . P ar+1

r , but πi /∈
P a1+1

1 . . . P
ai−1+1
i−1 P ai+1

i P
ai+1+1
i+1 . . . P ar+1

r (since Pi 6= OK).
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Take w =
r∑
i=1

πi. Clearly, P ai+1
i divides πj for i 6= j, and P ai

i is the highest

power of Pi dividing πi. Hence, P ai
i and no higher power of Pi divides w,

implying that gcd(IJ, 〈w〉) ⊂ I.

Now, look at the prime ideal decomposition, 〈w〉 = Pα1
1 . . . Pαr

r Qs1
1 . . . Qst

t . So
αi = ai for every i and IJ = P a1+b1

1 . . . P ar+br
r . So, gcd(IJ, 〈w〉) ⊃ I. Hence,

gcd(IJ, 〈w〉) = I.

Remark 3.2. Given any integral ideal I, there exists t 6= 0 ∈ Z such that
J = tI−1 ⊂ OK , i.e., IJ = tOK . By the previous lemma, I = gcd(IJ, 〈w〉) =
gcd(tOK , wOK) = tOK +wOK , i.e., any integral ideal can be generated over
OK by two algebraic integers in K.

The multiplicativity of norm can now be proved for ideals as well.

Lemma 3.5. Let I, J be integral ideals. Then N(IJ) = N(I)N(J).

Proof. Let λ = N(I) and µ = N(J). Let ξ1, ξ2, . . . , ξλ and η1, η2, . . . , ηµ be a
complete set of representatives of OK/I and OK/J , respectively.

By the previous lemma, there exists w ∈ OK such that gcd(IJ, 〈w〉) = I.

Claim : λµ elements ξi + wµj for 1 ≤ i ≤ λ; 1 ≤ j ≤ µ, form a complete set
of representatives of OK/IJ .

Proof of the claim : (i) Suppose ξi + wµj ≡ ξk + wµl (mod IJ). Thus,

(ξi − ξk) + w(ηj − ηl) ≡ 0 (mod IJ)

(ξi − ξk) + w(ηj − ηl) ∈ IJ ⊂ I.

We know, gcd(IJ, 〈w〉) = I, implies w ∈ OK . Thus, w(ηj − ηl) ∈ I, i.e.,
(ξi − ξk) ∈ I and i = k.

Hence, w(ηj − ηl) ∈ IJ . So, ηj − ηl ∈ J and j = l.

(ii) Given any x ∈ OK , there exists a unique ξi (1 ≤ i ≤ λ) such that
x ∈ ξi + I in OK/I.

Now, I = (IJ, 〈w〉) = IJ + 〈w〉, then x− ξi = wη + y with y ∈ IJ . So,

x− ξi ≡ wηj (mod IJ) for some ηj
x ≡ ξi + wηj (mod IJ).
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In view of this and Corollary 3.1 we can extend the definition of norm integral
ideals to norm fractional ideals. For a fractional ideal I, we define its norm

N(I) =
N(Q1)N(Q2) . . . N(Qs)

N(P1)N(P2) . . . N(Pr)

where I = Q1Q2...Qs
P1P2...Pr

is the prime factorisation of I.

3.4 Factorisation of rational primes in quadratic
fields

For the remaining part of this chapter, K will always stand for a quadratic
field Q[

√
t] with discriminant d. We need to set up a few notations before

we proceed.

The mapping σ : K −→ K such that σ(α) = α′, where α = x + y
√
d and

α′ = x− y
√
d for x, y ∈ Q, may be seen as an automorphism of K.

Let α ∈ K and α = α′ implies α ∈ Q and conversely.

For any subset S ofK, denote by S ′ the image of S under this automorphism.
We know σ2 = Id. Let I be a fractional ideal in K. So, there exists m 6= 0 ∈
Z such that mI ⊂ OK . Then σ(mI) ⊂ σ(OK) = OK , i.e., m · σ(I) ⊂ OK .
This shows that I ′ is a fractional ideal in K.

It is easy to see that N(I) = N(I ′), where I is a fractional ideal in K.

For this, without loss of generality, we can assume I to be an integral ideal.
Consider the ring homomorphism,

ϕ : OK/I −→ OK/I ′

α + I 7−→ α′ + I ′

This map is well-defined as α − β ∈ I implies (α − β)′ = α′ − β′ ∈ I ′. Now
Ker(ϕ) = {α+ I|α′+ I ′ = I ′} = {α+ I|α′ ∈ I ′} = {α+ I|α ∈ I}, as σ is an
automorphism. Hence ϕ is injective.

Now for α+I ′ ∈ OK/I ′ consider α′+I ∈ OK/I to see that ϕ(α′+I) = α+I ′.
Hence ϕ is an isomorphism of rings. Therefore,

|OK/I| = |OK/I ′|,

i.e., N(I) = N(I ′).
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This proof also shows that for a prime ideal P of OK , P ′ is also a prime ideal
of OK .

Let p ∈ Z be a rational prime and consider the integral ideal pOK . Let its
prime factorisation be

pOK = P1 · · ·Pr;
where P1, . . . , Pr are prime ideals in OK . So,

N(pOK) = NK(p) = p2 = N(P1) · · ·N(Pr).

This shows pOK has at most two prime factors (they may be the same
though), i.e. we have the following scenarios : pOK = P , or pOK = P 2,
or pOK = PQ, with P 6= Q (as we shall see later in this case Q is noth-
ing but P ′). Depending on the various possibilities we have the following
definition.

Definition 3.5. Let p ∈ Z be a prime.

(i) If pOK = PQ, with P 6= Q, then p splits in K.

(ii) If pOK = P 2, then p is ramified in K.

(iii) If pOK = P , then p remains a prime in K.

For an odd prime p, the following proposition gives a classification according
to their type of factorisation. For this we first recall the definition of the
Legendre symbol.

Definition 3.6 (Legendre symbol). For an odd prime p,

(
d

p

)
:=


0 if d ≡ 0 mod p,

+1 if d is a square modp,

−1 if d is not a square modp.

Proposition 3.2. If p is an odd prime, then

(i) pOK = P 2, P prime, if and only if (d
p
) = 0,

(ii) pOK = PP ′, P 6= P ′, P prime if and only if (d
p
) = +1,

(iii) pOK = P , P prime if and only if (d
p
) = −1,

where (d
p
) is the Legendre symbol.
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Proof. (i) Let pOK = P 2, P prime. Then there exists π = m+ n(d+
√
d

2
) ∈ P

and π /∈ P 2 = pOK and m,n ∈ Z.

Now, since π2 =
(

2m+nd+n
√
d

2

)2
= (2m + nd)2 + dn2 + 2n(2m + nd)

√
d, π2 ∈

pOK implies p|(2m+ nd)2 + dn2 and p|n(2m+ nd).

If p|n, then p|(2m + nd)2, i.e., p|(2m + nd). So, p|m, as p is an odd prime.
So, p|m and p|n then p|gcd(m,n). Hence, π ∈ pOK . This is a contradiction.
Thus, p|(2m+nd) and p 6 |n. Also since p|dn2, hence p|d. Therefore, (d

p
) = 0.

Conversely, let (d
p
) = 0. Consider the ideal P = pOK +

√
dOK . Then

P 2 = p2OK + p
√
dOK + dOK ⊂ pOK . Now we show p ∈ P 2. We know,

p2 ∈ P 2 and d ∈ P 2. Thus, gcd(d, p2) ∈ P 2.

Now, gcd(d, p2) 6= p2, because otherwise, d is either t or 4t, where t is square-
free. Thus, gcd(d, p2) = p. Therefore, p ∈ P 2, i.e., P 2 = pOK . Further, P is
necessarily a prime ideal as at most two prime ideals of OK can divide pOK .

(ii) Let (d
p
) = +1. Then there exists a ∈ Z such that a2 ≡ d (mod p),

i.e., (a2 − d) ≡ 0 (mod p). Clearly, p - a, otherwise p|d and it would give
(d
p
) = 0. Let P be an ideal generated by P = pOK + (a +

√
d)OK and

P ′ = pOK + (a−
√
d)OK .

So PP ′ = p2OK + p(a +
√
d)OK + p(a−

√
d)OK + (a2 − d)OK ⊂ pOK . We

first show p ∈ PP ′.

Note that 2ap ∈ PP ′ and p2 ∈ PP ′, hence gcd(2ap, p2) = p ∈ PP ′. There-
fore, PP ′ = pOK . Since pOK can have at most two prime factors, we get
P, P ′ are prime ideals in OK .

Next we show that P 6= P ′. It is enough to show that P + P ′ = OK .

Note that P + P ′ = 〈p, a +
√
d, a −

√
d〉. To prove the above-mentioned

statement, we have to show 1 as a Z-linear combination of {p, a+
√
d, a−

√
d}.

For this, (a +
√
d) + (a −

√
d) = 2a ∈ P + P ′ and p ∈ P + P ′. Hence,

gcd(2a, p) = 1 ∈ P + P ′. Therefore, P + P ′ = OK and thus, P 6= P ′.

Conversely, let pOK = PP ′, P 6= P ′, P prime. Then N(P ) = N(P ′) = p.
Also, there exists α ∈ P and α /∈ pOK . Then α = x+ y(d+

√
d

2
), x, y ∈ Z and

p divides at most one among x and y.

By Dedekind’s theorem, αOK = PQ, with Q ⊂ OK an ideal. So, N(αOK) =
N(P )N(Q), i.e., p = N(P )|N(αOK).

Now, N(αOK) = |NK(α)| = |αα′| = |(2x+ yd)2 − y2d|. Hence, (2x+ yd)2 ≡
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y2d (mod p).

If p|y, then p|(2x+ yd), i.e., p|x. Therefore, p|gcd(x, y), i.e., α ∈ pOK . This
is a contradiction.

Therefore, y is an invertible element of Z/pZ and
(

2x+yd
y

)2 ≡ d (mod p).

Therefore, (d
p
) = +1.

(iii) The validity of (iii) is an immediate consequence of (i) and (ii).

Definition 3.7 (Kronecker symbol).

(
d

2

)
:=


0 if d ≡ 0 mod 4,

+1 if d ≡ 1 mod 8,

−1 if d ≡ 5 mod 8.

Proposition 3.3. (i) 2OK = P 2, P prime if and only if (d
2
) = 0,

(ii) 2OK = PP ′, P 6= P ′, P, P ′ prime, if and only if (d
2
) = +1,

(iii) 2OK = P , P prime, if and only if, (d
2
) = −1,

where (d
2
) is the Kronecker’s symbol for quadratic reciprocity.

Proof. (i) Let (d
2
) = 0, hence d ≡ 0 (mod 4) i.e. d = 4t with t = 2, 3

(mod 4). Accordingly we have either d ≡ 0 (mod 8) or d ≡ 4 (mod 8).

(a) When d ≡ 0 (mod 8), let P = 〈2,
√
d

2
〉. So, P 2 = 4OK +

√
dOK + d

4
OK .

So, P 2 ⊂ 2OK .

Now to show, 2 ∈ P 2, we find integer solutions for 4a+ b
√
d+ cd

4
= 2.

We know, d = 4t, so 4a + 2b
√
t + ct = 2. So, 4a + ct = 2 and 2b = 0. So,

b = 0. Now t ≡ 2 (mod 4), so gcd(4, t) = 2. Hence we can use Bezout’s
identity to get integer solutions and hence 2OK ⊂ P 2.

(b) When d ≡ 4 (mod 8), then let P = 〈2, 1 +
√
d

2
〉. Then P 2 = 4OK + 2(1 +

√
d

2
)OK + (1 +

√
d

2
)2OK = 4OK + 2(1 +

√
t)OK + (1 +

√
t)2OK . Therefore,

P 2 ⊂ 2OK .

Now to show, 2 ∈ P 2, we find integer solution for 2 = 4a + 2b(1 +
√
t) +

c(1 + 2
√
t + t). Comparing the coefficients we have to find a, b, c ∈ Z such

that 2 = 4a+ 2b+ c+ ct and 0 = 2b+ 2c. So, b = −c. So, 4a+ c(t− 1) = 2.
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We know that t ≡ 3 (mod 4). So (t− 1) ≡ 2 (mod 4), i.e. gcd(4, t− 1) = 2.
We can then use Bezout’s identity to get integer solutions. Hence, 2 ∈ P 2

and therefore, 2OK = P 2.

Conversely let 2OK = P 2, P prime. We need to show that (d
2
) = 0, i.e., d ≡ 0

(mod 4). If d ≡ 0 (mod 4), then nothing to prove. So, let d ≡ 1 (mod 4).
So, d = t and OK = Z + Z(1+

√
t

2
) = Z + Z(1+

√
t

2
). Since P 6= P 2, there exists

π = x+ y(1+
√
d

2
) ∈ P such that π /∈ P 2. Hence, x, y are both not even.

Without loss of generality, we can assume that x and y are either 0 or 1.
Also, for any α ∈ OK , 2α ∈ 2OK . So, π, π + 2α ∈ P but not in P 2.

If y = 0, then x 6= 0 since otherwise π = 0 ∈ P 2. Also, x 6= 1 as then π =

1 /∈ P . So, y = 1 and x can be 0 or 1. Now, π2 = (x+ 1+
√
d

2
)2 = a+ b(1+

√
d

2
),

where a, b ∈ 2Z.

So, x2 +2x(1+
√
d

2
)+ 1+d+2

√
d

4
= a+ b

2
+ b

2

√
d. Upon comparing the coefficients,

we get b
2

= x+ 1
2
, implying b is odd. This is a contradiction.

Therefore, d ≡ 0 (mod 4), i.e., (d
2
) = 0.

(ii) Let (d
2
) = +1, then d ≡ 1 (mod 8). So, d = m and OK = Z + Z(1+

√
d

2
).

Define P = 2OK + (1+
√
d

2
)OK . So, PP ′ = 4OK + 2(1+

√
d

2
)OK + 2(1−

√
d

2
)OK +

(1−d
4

)OK . So, PP ′ ⊂ 2OK . Now, 2 = (1+
√
d)+(1−

√
d). Thus, 2OK ⊂ PP ′.

Therefore, 2OK = PP ′.

Now, P 6= P ′ since if P = P ′, then 2OK = P 2 and then (d
2
) = 0. This is a

contradiction.

Conversely let 2OK = PP ′, P 6= P ′, P prime. Then, N(P ) = 2. Also, there
exists π = x + y(d+

√
d

2
) ∈ P and π /∈ PP ′ = 2OK . Thus, x, y ∈ Z are not

both even.

Now, πOK = PQ, where Q ⊂ OK . Thus, 2 = N(P )|N(πOK)(= |NK(π)|)
and |NK(π)| = |ππ′| = |

(
2x+yd

2

)2 − y2d
4
|. Hence,

(
2x+yd

2

)2 ≡ y2d
4

(mod 2), i.e.,
(2x+ yd)2 ≡ y2d (mod 8).

Note that 2 - d, because if 2|d, then d is even and d ≡ 0 (mod 4). So, (d
2
) = 0

and 2OK = P 2 and P = P ′, which is a contradiction.

If y is even, then y = 2y1, where y1 /∈ 2Z or y = 2y2, where y2 ∈ 2Z.

Case(a) y = 2y1, 2 - y1, y1 ∈ Z. Then (2x + 2y1d)2 ≡ 4y1
2d (mod 8). So,

(x + y1d)2 ≡ y1
2d (mod 2) and 2 6 |y1 and 2 6 |d. Thus, 2 6 |y1d. So, y1d is
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odd. Hence, 2 6 |(x+ y1d)2 and thus x+ y1d is odd. Thus, x is even. This is
a contradiction as π /∈ 2OK .

Case(b) If 4|y, then we claim that 4|(2x + yd). Now, 4|y implies 16|y2d. So
at least, 8|(2x+ yd)2 and thus 16|(2x+ yd)2. Thus, 4|(2x+ yd). Again, 2|x.
This is a contradiction. Therefore, y has to be odd.

We can find, y2 ∈ Z such that y1y2 ≡ 1 (mod 8). Then d ≡ (2x + yd)2y2
2

(mod 8). Now 2 6 |d implies 2|(2x + yd)2y2
2, implying (2x + yd)2y2

2 is odd,
and square of an integer is either 0 (mod 4) or 1 (mod 4). The case of 0
(mod 4) is not possible. So, (2x+ yd)2y2

2 ≡ 1 (mod 4), i.e., d ≡ 1 (mod 8).
Thus, (d

2
) = +1.

(iii) As before, the validity of (iii) is an immediate consequence of (i) and
(ii).
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Chapter 4

Minkowski Theory and Finiteness
of the class group

4.1 Lattices

Definition 4.1. Let V be an n-dimensional R- vector space. A lattice in V
is a subgroup of the form Γ = Zv1+Zv2+· · ·+Zvm, with linearly independent
vectors v1, v2, . . . , vm of V . The m-tuple (v1, v2, . . . , vm) is called a basis, and
the set

Φ = {x1v1 + · · ·+ xmvm|xi ∈ R, 0 ≤ xi < 1}

is called the fundamental mesh of the lattice.

The lattice is called complete or a Z-structure of V if m = n, which implies
that the set of all translates Φ + γ, where γ ∈ Γ, of the fundamental mesh
covers the entire space V .

A lattice is a finitely-generated subgroup of V . But not every finitely-
generated subgroup is a lattice.

Example 4.1. Γ = Z + Z[
√

2] ⊂ R is not a lattice.

We know
√

2− 1 ∈ Z[
√

2], which implies an = (
√

2− 1)n ∈ Z[
√

2], for every
n ∈ N.

Now, limn→∞ an = 0 ∈ Z[
√

2] is a limit point of the lattice. Hence, Γ is not
discrete.

But each lattice Γ = Zv1 + Zv2 + · · · + Zvm is a discrete subgroup of V ,
i.e., any γ ∈ Γ is an isolated point, i.e., there exists a neighbourhood which

55
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contains no other point of Γ.

The above definition makes use of a choice of linearly independent vectors.
We will now give a characterisation of lattices which is independent of such
a choice.

Proposition 4.1. (Characterisation of lattices) A subgroup Γ ⊂ V is a
lattice if and only if it is discrete.

Proof. If Γ is a lattice, then it is discrete by definition.

Conversely, let Γ be a discrete subgroup of V .

Claim : Γ is closed.

Proof : Let U be an open neighbourhood of 0. Then there exists U ′ ⊂ U , a
neighbourhood of 0 such that the difference of every element of U ′ lies in U .

Now every U contains an open neighbourhood of 0 of the form
n∏
i=1

(−εi, εi).

Then we can choose U ′ accordingly. Also, V is a Hausdorff space. Now, if
there exists x /∈ Γ but x ∈ Γ̄. Then x is a limit point of Γ, i.e., there exists
y1 ∈ Γ such that y1 ∈ x + U ′. Also, there exists V ′, an open neighbourhood
of x ∈ x + U ′ such that y1 /∈ V ′. But since x is a limit point, there exists
y2 ∈ Γ such that y2 ∈ x+ U ′. And y1 6= y2.

Now y1, y2 ∈ x+U ′, implies that there exists x1, x2 ∈ U ′ such that y1 = x+x1

and y2 = x+ x2.

0 6= y1 − y2 = x1 − x2 ∈ U ′ − U ′ ⊂ U.

Since Γ is a subgroup of V , this implies γ = y1−y2 6= 0 ∈ Γ and also belongs
to U . Thus, 0 is not an isolated point, implying Γ is closed. Now we need to
show that Γ is a lattice.

Let V0 be a linear subspace of V , which is spanned by the set Γ, and m
be its dimension. Then we may choose a basis u1, u2, . . . , um of V0 which is
contained in Γ and form the complete lattice Γ0 = Zu1 +Zu2 + · · ·+Zum ⊂ Γ
of V0.

Claim : [Γ : Γ0] is finite.

Proof : Let γi ∈ Γ vary over a system of representatives of Γ/Γ0. Since Γ0 is
complete in V0, the translates Φ0 + γ of the fundamental mesh

Φ0 = {x1u1 + · · ·+ xmum |xi ∈ R, 0 ≤ xi < 1},
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where γ ∈ Γ0, covers the entire V0. Therefore, γi = µi + γ0i, where µi ∈ Φ0

and γ0i ∈ Γ0 ⊂ V0.

As the µi = γi − γ0i ∈ Γ lie discretely in the bounded set Φ0, the have to be
finite in number (since, closed and bounded discrete set is finite). In fact,
Γ ∩ Φ̄0 is compact and discrete, hence finite. Put q = [Γ : Γ0], we have
qΓ ⊂ Γ0. Because for every γ+Γ0 ∈ Γ/Γ0, q(γ+Γ0) = 0+Γ0. But q(γ+Γ0),
implies that qγ ∈ Γ0. Hence, qΓ ⊂ Γ0.

This implies, Γ ⊂ 1
q
Γ0 = Z(1

q
u1) + · · · + Z(1

q
um). By Fundamental theorem

of finitely-generated abelian groups, Γ admits a Z-basis v1, v2, . . . , vr; r ≤ m,
i.e., Γ = Zv1 + · · ·+ Zvr.

The vectors v1, . . . , vr are R-linearly independent and span them-dimensional
vector space V0. Therefore, r = m.

This shows Γ is a lattice.

Proposition 4.2. (Criterion for complete lattices) A lattice Γ ∈ V is com-
plete if and only if there exists a bounded subset M ⊂ V such that the collec-
tion of all the translates M + γ, for γ ∈ Γ covers the entire space V .

Proof. If Γ = Zv1 + Zv2 + · · · + Zvn is complete, then take M = Φ0, where
Φ0 = {x1v1 + · · ·+ xnvn |0 ≤ xi < 1}.

Conversely, Let M be a bounded subset of V whose translates M + γ, for
γ ∈ Γ covers V . Let V0 be the subspace spanned by Γ. We have to show that
V = V0 i.e., to show that V ⊂ V0.

Let v ∈ V . Since V =
⋃
γ∈Γ

(M + γ). Then, v = a + γ0, where a ∈ M ; γ0 ∈ Γ.

Also, for every l ∈ N, lv = al + γl, where al ∈M ; γl ∈ Γ ⊂ V0.

Also, the sequence (1
l
) is bounded, implying the sequence (al

l
) is bounded.

Hence, (al
l
) −→ 0 as l −→∞.

v = lim
l→∞

1

l
al + lim

l→∞

1

l
γl = lim

l→∞

1

l
γl ∈ V0.

Since V0 is closed, v ∈ V0.

Thus, Γ is a complete lattice.
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Let V be an Euclidean vector space, i.e., an R-vector space of finite dimension
n, with a symmetric, positive definite bilinear form

〈 , 〉 : V × V −→ R,

i.e., 〈v1, v2〉 = 〈v2, v1〉 for every v1, v2 ∈ V and 〈v, v〉 > 0 for every v 6= 0.
Then we have on V a notion of volume - more precisely, a Haar measure.

The cube spanned by the orthonormal basis {e1, e2, . . . , en} has volume 1.
The parallelepiped spanned by n linearly independent vectors v1, v2, . . . , vn,

Φ = {x1v1 + · · ·+ xnvn |xi ∈ R, 0 ≤ xi < 1}

has volume, V ol(Φ) = |det(A)|, where A = (aik) is the change of basis matrix,
vi =

∑
k

aikek. Hence,

(〈vi, vj〉) =
(∑

k,l

aikajl〈ek, el〉
)

=
(∑

k

aikajk
)

= AAT ,

and V ol(Φ) = |det(〈vi, vj〉)|
1
2 . Let Γ be the lattice spanned by v1, v2, . . . , vn.

Then Φ is a fundamental mesh of Γ and V ol(Γ) is defined to be V ol(Φ).

This also shows that a lattice is complete if and only if the volume of its
fundamental mesh is non-zero.

Further, this volume is independent of the choice of basis v1, . . . , vn of the
lattice because the change of basis matrix has determinant ±1, so that the
set Φ is transformed into a set of same volume.

Definition 4.2. A subset X of V is called centrally symmetric, if given
any point x ∈ X, the point −x ∈ X.

It is called convex if given any two points x, y ∈ X, {ty+(1−t)x |0 ≤ t ≤ 1}.

Theorem 4.1. (Minkowski’s Lattice Point Theorem) Let Γ be a com-
plete lattice in the Euclidean vector space V and X a centrally symmetric,
convex subset of V . Suppose that V ol(X) > 2nV ol(Γ). Then X contains at
least γ 6= 0 ∈ Γ.

Proof. It is enough to show that there exist two distinct lattice points γ1, γ2 ∈
Γ such that

(
1

2
X + γ1)

⋂
(
1

2
X + γ2) 6= φ.



4.2. MINKOWSKI THEORY 59

Choose a point in the intersection,

1

2
x1 + γ1 =

1

2
x2 + γ2,

where x1, x2 ∈ X. This implies,

γ = γ1 − γ2 =
1

2
x2 −

1

2
x1,

which is the centre of the line segment joining x2,−x1 and thus ∈ X ∩ Γ.

Now, if the sets 1
2
X + γ; γ ∈ Γ were pairwise disjoint, then the same would

be true of their intersections Φ∩ (1
2
X + γ) with a fundamental mesh Φ of Γ,

i.e., we would have

V ol(Φ) ≥
∑
γ∈Γ

V ol
(
Φ ∩ (

1

2
X + γ)

)
.

But translation of Φ ∩ (1
2
X + γ) by γ created the set (Φ− γ) ∩ 1

2
X of equal

volume and Φ− γ, for γ ∈ Γ covers the entire space V , thus also the set 1
2
X.

This implies,

V ol(Φ) ≥
∑
γ∈Γ

V ol
(
(Φ− γ) ∩ 1

2
X
)
≥ V ol(

1

2
X) =

1

2n
V ol(X).

This is a contradiction to the hypothesis that V ol(X) > 2nV ol(Γ).

Minkowski’s lattice point theorem cannot be improved, as can be seen by
taking X = (−1, 1) and Γ = Z in R. If X is compact, however, then the
statement of the theorem does remain true even if V ol(X) ≥ 2nV ol(Γ).

4.2 Minkowski Theory

Let K be a number field of degree n. In the present section, consider the
canonical mapping

j : K −→ KC :=
∏
τ

defined by a 7−→ j(a) = (τ(a)),

which results from the n distinct embeddings of K into C.

Let τ1, . . . , τr be the real embeddings; τr+1, . . . , τr+s be the distinct complex
embeddings up to complex conjugation; and let τr+s+1, . . . , τr+2s are such
that τr+i = τr+s+i , for 1 ≤ i ≤ s.
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The C-vector space KC is equipped with the Hermitian scalar product

〈x, y〉 =
∑
τ

xτyτ

The Galois groupGalR(C) is generated by the complex conjugation F : C −→
C sending z 7−→ z̄ and F 2 = IdC.

Consider the map,
F1 : KC −→ KC,

i.e., F1 : Cn −→ Cn, such that F1((xi)) = (x̄i). Also, F induces a map from
Em(K,C) to Em(K,C), τ 7−→ τ̄ , where Em(K,C) denotes the group of
embeddings of K into C.

Define a new map
F̃ : KC −→ KC

F̃ (z1, . . . , zr, zr+1, . . . , zr+s, zr+s+1, . . . , zr+2s)

= (z̄1, . . . , z̄r, zr+s+1, . . . , zr+2s, zr+1, . . . , zr+s).

Note that the scalar product becomes 〈F̃ x, F̃ y〉 = F 〈x, y〉.

Finally, we can define the linear map

Tr : Cn −→ C ; Tr(x) =
n∑
i=1

xi,

where x = (xi) ∈ Cn. Hence we see that the map Tr is F -equivariant, i.e.
Tr(F̃ (x)) = Tr(F1(x)) = F (Tr(x)). The composite K j−→ KC

Tr−→ C, gives
the usual trace of K over Q. Also, TrK/Q is F -invariant, i.e. TrK/Q(F (α)) =
TrK/Q(α).

We now concentrate on the R-vector space KR, which is the F̃ -invariant
subspace of KC(= Cn), i.e.,

KR = {z = (zi) ∈ Cn |zi = zi for 1 ≤ i ≤ r ; zr+i = zr+s+i for 1 ≤ i ≤ s}.

Note that KR is an R-module, and hence a R-vector space.

Now, it is easy to see that j(K) ⊂ KR. Hence, we can define the map
j : K −→ KR. So, F̃ (j(α)) = j(α), for every α ∈ K.

Let us now restrict the hermitian scalar product 〈 , 〉 from KC to KR.

〈 , 〉 : KC ×KC −→ C
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〈 , 〉
∣∣
KR×KR→R

Let x, y ∈ KR.

〈x, y〉 =
n∑
i=1

xiȳi =
r∑
i=1

xiyi +
s∑
i=1

xr+i yr+i +
s∑
i=1

xr+s+i yr+s+i.

This inner product is a real inner product.

We call the Euclidean vector space KR the Minkowski space, its scalar
product 〈 , 〉 the canonical metric, and the associated Haar measure the
canonical measure.

Also, we have the trace map Tr : KR −→ R and its composite with j : K −→
KR gives us the trace map TrK/Q, i.e. Tr ◦ j = TrK/Q.

Proposition 4.3. There is an isomorphism f : KR −→
∏
τ

R = Rr+2s, such

that (zi) 7−→ (xi), where

f((zi)) = (xi) =


zi if 1 ≤ i ≤ r

Re(zi) if r + 1 ≤ i ≤ r + s

Im(zi−s) if r + s+ 1 ≤ i ≤ r + 2s

This isomorphism transforms the canonical metric 〈 , 〉 into a scalar product,.
Let x, y ∈ KR,then

(x, y) =
∑
τ

ατxτyτ ,

where ατ = 1, if τ is real; and ατ = 2, if τ is complex.

Proof. Let (zi) ∈ kerf . Then xi = zi = 0 for 1 ≤ i ≤ r, xr+i = Re(zr+i) = 0
for 1 ≤ i ≤ s, and xr+s+i = Im(zr+i) = 0 for 1 ≤ i ≤ s. Hence, (zi) = (0).
Therefore, f is injective.

Since KR and Rr+2s are finite-dimensional vector spaces, the map f is also
surjective.

Thus, f is an isomorphism.

If z = (zi) = (ai + ibi) and z′ = (z′i) = (ci + idi) are in KR, then

〈z, z′〉 =
∑
τ

ziz̄′i =
r∑
i=1

aici+
r+s∑
i=r+1

(ai+ ibi)(ci− idi)+
r+2s∑

i=r+s+i

(ai+ ibi)(ci− idi)
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=
r∑
i=1

aici +
r+s∑
i=r+1

(ai + ibi)(ci + idi) +
r+s∑
i=r+i

(ai + ibi)(ci + idi)

=
r∑
i=1

aici +
r+s∑
r+1

2 ·Re[(ai + ibi)(ci − idi)]

=
r∑
i=1

aici +
r+s∑
r+1

2 · (aici + bidi)

Now, for (xi) = f((zi)) and (yi) = f((z′i)), then in Rr+2s under the map f ,
we have

(x, y) =

τr+2s∑
τ1

xiyi =
τr∑
τ1

aici +

τr+s∑
τr+1

(aici + bidi) +

τr+2s∑
τr+s+1

(aici + (−bi)(−di))

=
r∑
i=1

aici +
r+s∑
r+1

2 · (aici + bidi) = 〈z, z′〉.

The scalar product defined above transfers the canonical measure from KR
to Rr+2s. It differs from the standard Lebesgue measure by

V olcanonical(X) = 2s V olLebesgue(f(X)).

Now the next proposition will give us examples of lattices in the Minkowski
space KR.

Proposition 4.4. If I 6= 0 is an ideal of OK, then Γ = j(I) is a complete
lattice in KR. Its fundamental mesh has volume

V ol(Γ) =
√
|dK |N(I),

where N(I) is the norm of the integral ideal I.

Proof. Let α1, α2, . . . , αn be a Z-basis of I. So, Γ = Zj(α1) + · · ·+ Zj(αn).

Choose a numbering of the embeddings τ : K −→ C as τ1, . . . , τn and form
a matrix A = (τl(αi))n×n.

D(I) = D(α1, . . . , αn) = (detA)2 = (N(I))2 · dK .
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Also,

det(〈j(αi), j(αk)〉)n×n =
( n∑
i=1

τl(αi)τl(αk)
)

= det(AĀT ) = detA · detĀ

= detA · detA = |detA|2.

So,
V ol(Γ) =

∣∣det(〈j(αi), j(αk)〉)∣∣ 1
2 = |detA| =

√
|dK |N(I).

Using this proposition and Minkowski’s lattice point theorem, we get:

Theorem 4.2. Let I 6= 0 be an integral ideal of K and let cτi = ci > 0 for
τi ∈ Hom(K,C) be real numbers such that cτi = cτi and∏

τ

ci > A ·N(I),

where A =
(

2
π

)s√|dK |. Then there exists a ∈ I and a 6= 0 such that

|τi(a)| < ci, for every τi ∈ Hom(K, C).

Proof. The set X = {(zi) ∈ KR
∣∣ |zi| < ci} is centrally symmetric and convex.

Its volume V ol(X) can be computed via

f : KR −→
∏
τ

R

(zi) 7→ (xi),

where

f((zi)) = (xi) =


zi if 1 ≤ i ≤ r

Re(zi) if r + 1 ≤ i ≤ r + s

Im(zi−s) if r + s+ 1 ≤ i ≤ r + 2s.

Hence,

f(X) = {(xi) ∈
∏
τ

R
∣∣ |xi| < ci for 1 ≤ i ≤ r; x2

i+x
2
i+s < c2

i for r+1 ≤ i ≤ r+s}
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The canonical volume of X comes out to be 2s times the Lebesgue volume
of the image.

V olcan(X) = 2s V olLeb(f(X)) = 2s
r∏
i=1

(2 ci)
i=r+2s∏
i=r+1

(πc2
i ) = 2r+sπs

∏
i

ci.

Now, using the previous proposition,

V olcan(X) > 2r+sπs
( 2

π

)s√|dK |N(I) = 2nV ol(Γ).

Thus the hypothesis of Minkowski’s lattice point theorem is satisfied. So,
there exists a point j(a) ∈ X, a 6= 0 ∈ I. In other words,

|τi(a)| < ci, for every τi ∈ Hom(K, C).

There is a multiplicative version of Minkowski theory. It is based on the
homomorphism

j : K∗ −→ K∗C =
∏
τ

C∗

The multiplicative group K∗C admits the homomorphism,

N : K∗C −→ C∗

given by the product of coordinates. The composite

K∗
j−→ K∗C

N−→ C∗

is the usual norm of K over Q. NK/Q(a) = N(j(a)).

In order to produce a lattice from the multiplicative theory, we use the log-
arithm to pass from multiplicative to additive groups.

l : C∗ −→ R
z 7−→ log|z|

The image of K∗R under the map l lies in the set
[∏
τ

R
]+

= {(xi) ∈∏
τ

R |x1, x2, . . . , xr ∈ R;xr+i = xr+s+i , 1 ≤ i ≤ s}.
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It induces a surjective homomorphism

l̃ : K+
C −→

∏
τ

R

(zτ ) 7−→ (log|zτ |),

and we can obtain the commutative diagram

K∗ K∗C
∏
τ

R

Q∗ C∗ R

j

NK/Q N

l̃

Tr

i l

The involution F ∈ GalR(C) acts on all groups trivially on K∗, the map F̃
on KC∗ as before, and on points x ∈

∏
τ

R by τi(F̃ (x)) = τ̄i(x).

We have,

F̃ ◦ j = j,

F̃ ◦ l̃ = l̃ ◦ F̃ ,
N ◦ F̃ = F ◦N,
Tr ◦ F̃ = Tr.

We now pass to the fixed modules under GalR(C) and obtain the following
diagram:

K∗ K∗R
[∏
τ

R
]+

Q∗ R∗ R

j

NK/Q N

l̃

Tr

i l

The R-vector space
[∏
τ

R
]+ is explicitly given as follows.

Separate as before the embeddings τ : K −→ C into real ones τ1, . . . , τr
and pairs of complex conjugate ones τr+1, τr+1, . . . , τr+s, τr+s. We obtain a
decomposition analogous to the one for

[∏
τ

C
]+.

[∏
τ

R
]+

=
r∏
i=1

R×
r+s∏
i=r+1

[R× R]+.
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The factor [R× R]+ now consists of points (x, x) and we identify with R by
the map (x, x) 7−→ 2x. In this way we obtain an isomorphism[∏

τ

R
]+ ∼= Rr+s,

which transforms the map Tr :
[∏
τ

R
]+ −→ R into the usual map

Tr : Rr+s −→ R,

given by the sum of coordinates.

Identifying
[∏
τ

R
]+ with Rr+s, the homomorphism

˜̃l : K∗R −→ Rr+s

is given by

˜̃l(xi) = (log|x1|, . . . , log|xr|, log|xr+1|2, . . . , log|xr+s|2),

where (xi) ∈ K∗R ⊂
∏
τ

C∗.

4.3 Class group

Let K be a number field of degree n. The non-zero fractional ideals in K
form a multiplicative group which we denote by 4. The ring OK of algebraic
integers is the identity element of 4.

A fractional ideal in K is said to be principal if it is of the form αOK with
α ∈ K. The principal fractional ideals I 6= 0 forms a subgroup Π of 4. The
quotient group HK = 4/Π is called the group of ideal classes in K or the
class group of K.

The order ofHK , denoted by hK is called the class number ofK. If hK = 1,
then OK is a principal ideal domain.

Two fractional ideals I, J 6= 0 in K are therefore in the same ideal class if
and only if I = (α)J for some α ∈ K. In that case they are said to be
equivalent.
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4.3.1 Finiteness of class group

The aim of this subsection is to prove that the class number of a number
field K is finite. But we need a lemma first.

Lemma 4.1. In every integral ideal I 6= 0, there exists a ∈ I, a 6= 0 such
that

|NK/Q(a)| ≤
( 2

π

)s√|dK |N(I).

Proof. Given ε > 0, we choose positive real numbers ci for τi ∈ Hom(K,C)
such that for the complex conjugate homomorphisms τi and τi, ci = cs+i for
r + 1 ≤ i ≤ r + s and

n∏
i=1

ci =
( 2

π

)s√|dK |N(I) + ε.

Then by Theorem 4.2, there exists a 6= 0 ∈ I, satisfying |τi(a)| < ci.

Thus, |NK/Q(a)| =
(

2
π

)s√|dK |N(I) + ε. This is true for all ε > 0.

Hence,

|NK/Q(a)| ≤
( 2

π

)s√|dK |N(I).

As a first application of Minkowski theory, we are going to show that the
ideal class group HK of an algebraic number field is finite.

Theorem 4.3. The ideal class group HK = 4/Π is finite.

Proof. If P 6= 0 is a prime ideal of OK and P ∩ Z = pZ. Then OK/P is a
finite field extension of Z/pZ of degree say f ≥ 1, we have N(P ) = pf .

Given a p, there exist only finitely many prime ideals P such that P ∩Z = pZ
(because this means P |〈p〉 and by Dedekind’s theorem, it has only finitely
many prime ideals in its decomposition and each of them is maximal).

Hence there are only finitely many prime ideals with bounded norm. Since
every integral ideal admits a representation I = P v1

1 . . . P vr
r , where vi > 0 and

N(I) = N(P1)v1 . . . N(Pr)
vr , and altogether only a finite number of ideals I

of OK with N(I) ≤M , for a given M .
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It therefore suffices to show that each ideal class [I] ofHK contains an integral
ideal I1 such that

N(I1) ≤M =
( 2

π

)s√|dK |.
For this, choose an arbitrary representation I of the class, and a γ ∈ OK ,
γ 6= 0 such that J = γI−1 ⊂ OK .

By the previous lemma, there exists α ∈ J , α 6= 0 such that

|NK/Q(α)| ≤M ·N(J).

This implies

|NK/Q(α)| N(J)−1 = N(〈α〉) ·N(J−1) = N(〈α〉 · J−1) = N(αJ−1) ≤M.

The ideal I1 = αJ−1 = αγ−1I ∈ [I].

4.4 Minkowski bound

Consider the set Xt = {(xi) ∈ KR|
∑
i

|xi| < t}. This set is convex and

centrally symmetric. We know the map f : KR −→
∏
τ

R = Rr+2s. Now

consider a map
g : Rr+2s −→ Rr × Cs

such that,

(x1, x2, . . . , xr, y1, . . . , ys, ys+1, . . . , y2s) 7−→ (x1, . . . , xr, y1+iys+1, . . . , ys+iy2s).

This map g is an isometric isomorphism.

Now look at the image of Xt under function composition g ◦ f , call it Bt.
Then

Bt =

{
(y1, . . . , yr, z1, . . . , zs) ∈ Rr × Cs |

r∑
i=1

|yi|+ 2
s∑
j=1

|zj| ≤ t

}
for t ≥ 0. Since g is an isometric isomorphism, we can see that

V ol(Bt) = V ol(g ◦ f(Xt)) = V ol(f(Xt)).

Hence, to show that the canonical volume of the set Xt, we will use n-
dimensional integration on the set Bt. We will show that the V olLeb(Bt) =
2r(π

2
)s t

n

n!
. Then V olCan(Xt) = 2sV olLeb(Bt), i.e the canonical volume of the

set Xt is 2rπstn

n!
.
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Proposition 4.5. The V olLeb(Bt) = V (r, s, t) = 2r
(
π
2

)s tn
n!
.

Proof. The proof is by double induction on r and s.

If r = 1 and s = 0. Hence n = 1. We are calculating the length of [−t, t],
which is 2t as predicted.

If r = 0 and s = 1, then n = 2. We are calculating the area of

{z1 ∈ C | 2|z1| ≤ t},

which is a disc of radius t/2 and hence the resulting volume is πt2

4
.

Now assume that the formula holds for r, s and all t. Then V (r + 1, s, t) is
the volume of the set described by

|y|+
r∑
i=1

|yi|+ 2
s∑
j=1

≤ t,

i.e.,
r∑
i=1

|yi|+ 2
s∑
j=1

≤ t− |y|.

Now if |y| > t, then Bt is empty.

For smaller values of |y|, suppose we change |y| to |y| + dy. This creates a
box in (n+ 1)-space with dy as one of its dimensions. The volume of the box
is V (r, s, t− |y|)dy.

Thus, V (r + 1, s, t) =
t∫
−t
V (r, s, t− |y|)dy = 2

t∫
0

2r
(
π
2

)s ( (t−y)n

n!

)
dy

=
2r+1

n!

(π
2

)s t∫
0

(t− y)ndy = 2r+1
(π

2

)s tn+1

(n+ 1)!

as desired. Now V (r, s+ 1, t) is the volume of the set described by

r∑
i=1

|yi|+ 2
s∑
j=1

|zj|+ 2|z| ≤ t.

As above,

V (r, s+ 1, t) =

∫
|z|≤t/2

V (r, s, t− 2|z|)dµ(z),
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where µ is the Lebesgue measure on C. In polar coordinates, the integral
becomes

=

2π∫
θ=0

t/2∫
l=0

2r
(π

2

)s (t− 2l)n

n!
l · dl · dθ =

2π∫
θ=0

2r
(π

2

)s 1

n!
dθ

t/2∫
l=0

(t− 2l)nl dl.

Write (t− 2l)nl dl = −l d(t−2l)n+1

2(n+1)
and consider

t/2∫
l=0

−l
2(n+1)

d(t− 2l)n+1.

Now integrating by parts, we get

t/2∫
l=0

−l
2(n+ 1)

d(t−2l)n+1 = (−l) (t− 2l)n+1

(−2)(n+ 1)
+

t/2∫
0

(t− 2l)n+1

2(n+ 1)
dl = 0+

tn+2

4(n+ 1)(n+ 2)
.

Thus, V (r, s+ 1, t) = 2r
(
π
2

)s+1 tn+2

(n+2)!
. This completes the induction.

Theorem 4.4 (Minkowski bound). If I 6= 0 is an integral ideal of OK, then
there exists a 6= 0 ∈ I such that

|NK/Q(a)| ≤M ·N(I),

where M = n!
nn

( 4
π
)s
√
|dK | is called the Minkowski bound.

Proof. The set Bt is convex, symmetric about the origin and compact. Also

V olLeb(Bt) = 2r
(π

2

)s tn
n!

(4.1)

We choose a t ≥ 0 such that

V olLeb(Bt) = 2−sV olCan(Bt) = 2−sV olCan(f(Xt)) = 2n−sV ol(j(I))

= 2n−s
√
|dK |N(I) (4.2)

Now, equating equations (4.1) and (4.2),

tn = 2n−rπ−s(n!)
√
|dK |N(I)

By Minkowski’s lattice point theorem, there exists a non-zero element a ∈ I
such that j(a) ∈ Bt. Also,

|NK/Q(a)| =
n∏
i=1

|τi(a)|.
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Let τi(a) = ai. Now using the AM-GM inequality (a1a2 · · · an)1/n ≤ a1+a2+···+an
n

for positive real numbers we get,

|NK/Q(a)| =
n∏
i=1

ai ≤

(
1

n

r∑
i=1

|ai|+
2

n

r+s∑
i=r+1

|ai|

)n

.

Since j(a) ∈ Bt, we have |NK/Q(a)| ≤ tn

nn
. By choice of t,

|NK/Q(a)| ≤ 1

nn
2n−rπ−s(n!)

√
|dK |N(I) =

(
4

π

)s
n!

nn

√
|dK |N(I).

Corollary 4.1. In every ideal class of a number field K of degree n, there
exists an integral ideal I such that

N(I) ≤ (
4

π
)s
n!

nn

√
|dK |.

Proof. Choose J ′ as a fractional ideal in the given ideal class. Then, without
loss of generality, J = (J ′)−1 is an integral ideal.

Choose a non-zero α ∈ J such that α satisfies the norm inequality. Let
I = αJ ′, is our candidate.

I is an integral ideal because α ∈ J and JJ ′ = OK . So IJ = 〈α〉. So,

N(I)N(J) = |NK/Q(α)| ≤
(

4

π

)s(
n!

nn

)√
dKN(J),

i.e.,

N(I) ≤
(

4

π

)s(
n!

nn

)√
dK .

Corollary 4.2. Let K be a number field of degree n and let dK be its dis-
criminant. Then

|dK | ≥
(
nn

n!

)2 (π
4

)2s

>
1

e2n

(
πe2

4

)n
.

Proof. If I is an integral ideal and a ∈ I, non-zero, then

N(〈a〉) ≥ N(I),
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this implies,

M =

(
4

π

)s
n!

nn

√
|dK | ≥ 1,

i.e.

|dK | ≥
(
nn

n!

)2 (π
4

)2s

.

The second inequality in he statement is obtained by Stirling’s approxima-
tion, viz., n! ∼

√
2πn(n

e
)n.

Hence,

|dK | ≥
(
nn

n!

)2 (π
4

)2s

>
1

e2n

(
πe2

4

)n
.

Note that πe2

4
≈ 5.8 > 1. Now, using ratio test for (an) = 1

e2n
(πe

2

4
)n,

lim
n→∞

∣∣an+1

an

∣∣ = lim
n→∞

∣∣ n

n+ 1

πe2

4

∣∣ =
πe2

4
lim
n→∞

1

1 + 1
n

=
πe2

4
> 1.

Therefore, (an)→∞ as n→∞. By comparison test, |dK | → ∞ as n→∞.
This shows that the absolute value of the discriminant |dK | tends to ∞ with
the degree n of the number field.



Chapter 5

Dirichlet’s unit theorem

5.1 Group of units

Let K be a number field of degree n and let OK be its ring of integers.

Definition 5.1. A non-zero element α ∈ OK is called a unit of OK if
α−1 ∈ OK.

So, the units of K form a subgroup U of K∗.

If α ∈ OK is an unit, then there exists β ∈ OK such that αβ = 1. So,
NK(αβ) = NK(α)NK(β) = 1. Hence, NK(α) = ±1 (since, NK(α), NK(β) ∈
Z).

Conversely, if α ∈ OK and NK(α) = ±1, then α is a unit. Since α(1) ·
α(2) · · ·α(n) = ±1, where α(i) = σi(α) and for 1 ≤ i ≤ n, σi’s are the distinct
embeddings of K into C.

Example 5.1. Let K = Q[
√

5], then OK = Z[1+
√

5
2

]. Then {1, 1+
√

5
2
} is an

integral base. Let α = 1
2

+
√

5
2
.

1 7−→ (
1

2
+

√
5

2
) and

√
5 7−→ (

√
5

2
+

5

2
).

Hence, Aα =

(
1
2

5
2

1
2

1
2

)
. Then det(Aα) = NK(α) = 1

4
− 5

4
= −1. Hence α is

an unit in K.

Lemma 5.1. Let c ≥ 0 be a real number. The number of algebraic integers
α ∈ OK such that |α(i)| ≤ c and for all 1 ≤ i ≤ n, is finite.

73
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Proof. Let w1, w2, . . . , wn be an integral base of OK , then any α ∈ OK can
be written as α = x1w1 + · · ·+ xnwn, xi ∈ Z.

Also, α(i) = x1w
(i) + · · ·+ xnw

(i). So, A = ΩX, where

A =

α
(1)

...
α(n)


n×1

, X =

x1
...
xn


n×1

and Ω = (w
(k)
j ).

Since Ω has an inverse Ω−1 in Mn(C). Thus, X = Ω−1A. By assumption,
|α(i)| ≤ c. Hence, |xi| ≤ Mc, where M depends only on Ω−1, thus only on
K. Since the number of integers satisfying |xi| ≤ Mc is finite, the lemma
follows.

Definition 5.2. A complex number α is called a root of unity if αm = 1
for some m 6= 0 ∈ Z.

If ρ is a root of unity in K then ρm = 1 for some m 6= 0 ∈ Z. So, |ρ(i)| = 1,
for 1 ≤ i ≤ n.

Also, every root of unity in K is a unit, but not conversely.

Example 5.2. Let K = Q[
√

2], 1 +
√

2 is a unit, but not a root of unity.

Corollary 5.1. In the previous lemma, let c = 1. Then the number of roots
of unity in K is finite.

Lemma 5.2. The roots of unity in K form a finite cyclic subgroup.

Proof. Let ZK be the group of roots of unity in K, let ζt = e
2πipt
qt , for t =

1, 2, . . . , w be the elements of ZK .

Let q0 = q1q2 . . . qw and let A be the subgroup of Z consisting of integers p
for which e

2πip
q0 ∈ ZK . Then, A = p0Z for some p0 > 0 ∈ Z, and

〈e
2πip0
q0 〉 ⊂ ZK .

Now, any element in ZK is ζ1 = e
2πip1
q1 = e

2πikp0
q0 , for some k ∈ Z. Hence,

ζ1 ∈ 〈e
2πip
q0 〉. Thus, ZK ⊂ 〈e

2πip0
q0 〉.
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5.2 Dirichlet’s unit theorem

Let O∗K denote the group of units in OK and µ(K) denote the group of roots
of unity in K. It is clear that µ(K) ⊂ OK .

The size of the group O∗K is determined by the number r of real embeddings
of K and the number s of pairs of complex conjugate embeddings. In order
to describe the group, we use the diagram which was set up in Chapter 4,
during the discussion on multiplicative Minkowski theory:

K∗ K∗R
[∏
τ

R
]+

Q∗ R∗ R

j

NK/Q N

l̃

Tr

i log| |

In the above commutative diagram we consider the subgroups:

O∗K = {ε ∈ OK |NK/Q(ε) = ±1},

the group of units,
S = {y ∈ K∗R|N(y) = ±1},

the "norm-one surface", and

H = {x ∈
[∏

τ

R
]+

|Tr(x) = 0},

the "trace-zero hyperplane".

We obtain the homomorphisms

O∗K
j−→ S

l̃−→ H

and the composite λ := l̃ ◦ j : O∗K −→ H. The image will be denoted by
Γ = λ(O∗K) ⊂ H.

Proposition 5.1. The sequence

1 −→ µ(K) −→ O∗K
λ−→ Γ −→ 0

is exact.
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Proof. We have to show the µ(K) is the kernel of λ.

For ζ ∈ µ(K) and τ : K −→ C any embedding we find log|τ(ζ)| = log1 = 0.
So, µ(K) ⊂ ker(λ).

Conversely, let ε ∈ O∗K be an element in the kernel. So, λ(ε) = l̃(j(ε)) = 0.
This means that |τ(ε)| = 1 for each embedding τ : K −→ C. Hence, j(ε) =
(τ(ε)) lies in the bounded domain of the R-vector space KR.

While, j(ε) is a point of the lattice j(OK) of KR. Therefore, the kernel of λ
can contain only finite number of elements, and thus, being a finite group,
contains only the roots of unity in K∗.

We now state the main theorem of this section. Once we have proven this
theorem, Dirichlet’s unit theorem can be easily deduced.

Theorem 5.1. The set Γ = λ(O∗K), as defined above, is a complete lattice
in H.

As of now, all we know is the Γ ⊂ H. Recall from earlier that a complete
lattice is a free Z-module. So here, since H is a (r+s−1)-dimensional space,
then our ultimate goal is to prove that Γ is a free Z-module with r + s − 1
generators. To prove this theorem, we will need several lemmas.

Lemma 5.3. Let a be a non-zero rational integer. Up to multiplication by
units, there are only finitely many elements α ∈ OK such that NK/Q(α) = a.

Proof. Let α1, α2 ∈ OK such that NK/Q(α1) = NK/Q(α2) = a and α1 =
α2 + aγ, where γ ∈ OK . Then α1

α2
= 1 + a

α2
γ ∈ OK .

But the same is true for α2

α1
. so, α1

α2
must be a unit. So we have proven that

if α1, α2 have norm a and if α1 ≡ α2 (mod aOK), then α1

α2
is a unit.

Since there are only finitely many elements in the factor ring OK/aOK , there-
fore, up to multiplication by units, there are at most |OK/aOK | elements of
norm ±a.

Recall that Γ′ is a lattice in Rm if and only if it is a discrete subgroup of Rm.
Since, Γ ⊂ H ⊂ Rr+s ∼= [

∏
τ

R]+ ⊂
∏
τ

R, to show that Γ is a discrete subset,

it is enough to prove the following:

Lemma 5.4. For any c > 0, the set {(xi) ∈
∏
τ

R| |xi| ≤ c} contains only

finitely many elements of Γ.
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Proof. If α ∈ O∗K , then l̃(j(α)) is in the set if and only if e−c ≤ |τ(α)| ≤ ec for
every τ ∈ Hom(K,C). This puts a bound on the coefficients of the minimal
polynomial of α, (since the coefficients are just sums and products of the
conjugates τ(α) of α.

Hence there are only finitely many such polynomials, which means there
can only be finitely many such α. Hence this set has only finitely many
elements.

We deduce from this lemma that Γ is a discrete subgroup and thus Γ is a
lattice. It remains to be shown that Γ is a complete lattice of H.

Recall that if Γ ⊂ Rm is a lattice, and M ⊂ Rm is a bounded set such that
M + Γ = Rm, then Γ is a complete lattice.

Proof of Theorem 5.1. We would like to construct such a set M for Γ. First,
let S := {y ∈ K∗R| |N(y)| = 1}. Recall the map j : K∗ −→ K∗R ⊂ KR.
We will construct a subspace T of S such that T is bounded in KR and
S =

⋃
ε∈O∗K

T · j(ε). Then M = l̃(T ) will be a set that satisfies the above

mentioned condition for Γ.

It is easy to see that l̃(S) = H. Then we have

H = l̃(S) =
⋃
ε∈O∗K

l̃(T )l̃(j(ε)) =
⋃
γ∈Γ

l̃(T )γ =
⋃
γ∈Γ

M γ,

and setting M = l̃(T ) hence we get H = M + Γ. Also since T ⊂ S, T is
bounded and henceM is bounded. Therefore, once we have constructed such
a set T , then we can define M as above. So we now construct T .

Recall from Minkowski theory, Theorem 4.2 which states, Let I 6= 0 be an
integral ideal of K and let cτi = ci > 0 for τi ∈ Hom(K,C) be real numbers
such that cτi = cτi and ∏

τ

ci > A ·N(I),

where A =
(

2
π

)s√|dK |. Then there exists a ∈ I and a 6= 0 such that

|τi(a)| < ci, for every τi ∈ Hom(K, C).

. We apply this to case I = OK . Let ci be as above, and let C :=
∏
τ

ci >

( 2
π
)s
√
|dK |. Now define a set

X := {(zi) ∈ KR||zi| < ci}.
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Then by Theorem 4.2, there exists a non-zero α ∈ OK such that j(α) ∈ X.
(Recall from earlier, in Minkowski theory, that j is a map whose image in
KR is defined by an ordered n-tuple, each coordinate of which is the image
of the original point under some embedding of the number field K.)

Now let us take y = (yi) ∈ S. Then we define Xy to be a similar set:

Xy := {(zi) ∈ KR| |zi| < ci · |yi| for all τi ∈ Hom(K,C)}.

Notice that since y ∈ S, then the product of over all τ ∈ Hom(K,C) of
ci · |yi| = C. Again by Theorem 4.2, there exists a non-zero α ∈ OK such
that j(α) ∈ Xy, so j(α) = xy for some x ∈ X. So upon rearranging terms,
y−1 = x(j(α))−1.

We now know that any element of S can be written as xj(α)−1, i.e., the
product of an element from a bounded set and some element of KR. In order
to prove S =

⋃
ε∈O∗K

T · γε, we need to show that we can replace (j(α))−1 by

an element of norm 1.

By a previous lemma, if we know that there are α1, · · · , αn ∈ OK such that
for every α ∈ OK having |NK/Q(α)| < C, then we have a representation
εα = αi for some unit ε in K. Applying this, we have:

y−1 = x(j(α))−1 = x(j(α−1)) = xj(εα−1
i ) = xj(ε)j(α−1

i ),

and since y−1 ∈ S, j(ε) ∈ S, then x(j(α))−1 ∈ S. It follows then that

S =
⋃
ε∈O∗K

( n⋃
i=1

(S ∩Xj(α−1
i ))

)
j(ε).

Now let T :=
n⋃
i=1

(S ∩Xj(α−1
i )). T is bounded in KR, since S is bounded and

the boundedness of Xj(α−1
i ) follows from the boundedness of X.

Therefore, Γ is a complete lattice.

Now we can state and prove Dirichlet’s unit theorem.

Theorem 5.2. (Dirichlet’s Unit Theorem) The group of units O∗K of OK
is the direct product of the finite cyclic group µ(K) and a free abelian group
of rank r + s− 1.



5.3. REGULATOR 79

Proof. Since Γ = λ(O∗K), the map λ : O∗K −→ Γ ∼= Zr+s−1 is a surjective
group homomorphism and with kerλ = µ(K).

Let γ1, . . . , γr+s−1 be a free system of generators of Γ. Let ε1, . . . , εr+s−1 be
such that λ(εi) = γi. Then

µ(K) ∩ εZ1 · εZ2 · · · εZr+s−1 = 1,

i.e.,
µ(K) · εZ1 · εZ2 · · · εZr+s−1 = O∗K ,

where εZi denotes any integer power of εi.

Hence there exist elements ε1 · · · εr+s−1 ∈ O∗K such that every ε ∈ O∗K can be
written uniquely in the form

ε = ζ · εm1
1 · εm2

2 · · · ε
mr+s−1

r+s−1 ,

where ζ ∈ µ(K) and m1, . . . ,mr+s−1 ∈ Z.

The units ε1, . . . , εr+s−1 are called fundamental units.

5.3 Regulator

Identifying [
∏
τ

R]+ = Rr+s, H becomes a subspace of the euclidean space

Rr+s and thus itself a euclidean space.

We may therefore try computing the volume of the fundamental mesh V ol(λ(O∗K))
of the unit lattice Γ = λ(O∗K)) ⊂ H.

Let ε1, ε2, . . . , εt, where t = r + s− 1, be a system of fundamental units and
Φ the fundamental mesh of the unit lattice λ(O∗K)), spanned by the vectors
λ(ε1), . . . , λ(εt) ∈ H.

Now let us take a vector in Rr+s orthogonal to H. We will choose

λ0 :=
1√
r + s

(1, 1, . . . , 1) ∈ Rr+s.

Then λ0, λ(ε1), . . . , λ(εt) is a basis of a complete lattice in Rr+s. The funda-
mental mesh of this lattice has volume:

d :=

∣∣∣∣∣ det


1√
r+s

λ1(ε1) · · · λ1(εt)
...

... . . . ...
1√
r+s

λt+1(ε1) · · · λt+1(εt)

∣∣∣∣∣
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If Φ is the fundamental mesh of Γ in H, then V ol(Φ) = d. We can compute
d by adding all rows to any chosen row. For instance, if we do this for the
first row, we get

d :=

∣∣∣∣∣ det


√
r + s 0 · · · 0
0 λ2(ε1) · · · λ2(εt)
...

... . . . ...
0 λt+1(ε1) · · · λt+1(εt)


∣∣∣∣∣.

Therefore, letting the bottom right t × t matrix to be A, we have d =√
r + s| det(A)|.

Definition 5.3. The regulator of K, denoted by RK, is defined to be the
absolute value of the determinant of any t× t, where t = r+ s− 1, minor of
the matrix  λ1(ε1) · · · λ1(εt)

... . . . ...
λt+1(ε1) · · · λt+1(εt)

 .

From our above analysis, we see that the regulator is well-defined, i.e., it is
invariant under the choice of minor, which follows since d is independent of
the choice of the fundamental system of units and also choice of deletion.
The explicit form of this matrix is:

log|τ1(ε1)| · · · log|τ1(εt)|
... . . . ...

log|τr(ε1)| · · · log|τr(εt)|
log|τr+1(ε1)|2 · · · log|τr+1(εt)|2

... . . . ...
log|τr+s(ε1)|2 · · · log|τr+s(εt)|2


,

where τ1, . . . , τr are the real embeddings of K and τr+1, . . . , τr+s are the dis-
tinct complex embeddings, up to conjugation, of K.

5.4 Units in a quadratic field

Let K be a quadratic field of discriminant d. In the notation of n = r + 2s,
if d > 0, then r = 2 and s = 0; if d < 0, then r = 0 and s = 1.

In the case of real quadratic field K, the only roots of unity in K are real
roots of unity, viz., ±1.
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So, by Dirichlet’s unit theorem, every unit ε in K can be written in the form
±εn1 , n ∈ Z, for a fixed unit ε1 in K, as r + s− 1 = 2− 1 = 1 in this case.

Also, ε1 6= ±1 (otherwise, we will not get the other units in K). If ε1 has this
property, so do ε−1

1 ,−ε1,−ε−1
1 . But among ε1, ε−1

1 ,−ε1,−ε−1
1 , exactly one of

them is greater than 1. We denote it by η and call it the fundamental unit
of K.

It is uniquely determined and every unit ε in K is of the form ±ηn for n ∈ Z.

5.4.1 Pell’s equation

Any unit ε ∈ K = Q(
√
d) of discriminant d > 0 gives rise to a solution of

the Diophantine equation

x2 − dy2 = ±4; x, y ∈ Z.

Since NK(ε) = NK(x+y
√
d

2
) = x2−dy2

4
and NK(ε) = ±1.

Conversely, if for d > 0 in Z, there exist x, y ∈ Z satisfying x2 − dy2 = ±4,
then x±y

√
d

2
is a unit in K = Q(

√
d).

In case d is the discriminant of a real quadratic field, we’ll have a non-trivial
solution to the Diophantine equation. This equation x2− dy2 = ±4 is called
the Pell’s equation.

If d < 0, K is an imaginary quadratic field and t = r + s − 1 = 0. Thus by
Dirichlet’s unit theorem, every unit in K is a root of unity.

We know, the roots of unity form a finite cyclic group. Thus, the units in K
form a finite cyclic group of order w.

Proposition 5.2. When K is a complex quadratic field with discriminant d,
such that if

(i) d < −4, then w = 2,

(ii) d = −4, then w = 4, and

(iii) d = −3, then w = 6.

We don’t look at d = −2 ≡ 2 (mod 4) or d = −1 ≡ 3 (mod 4) because d ≡ 0
(mod 4) or d ≡ 1 (mod 4).
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Proof. Let K = Q(
√
d) and let α ∈ K be a unit. Also, α = p + q(d+

√
d

2
)

where p, q ∈ Z. Then,

NK(α) = (p+ q
d

2
)2 +

q2

4
|d| = 1. (5.1)

So, (p+ qd
2

)2 ≤ 1 and q2 ≤ 4
|d| .

Case(i) If d < −4, then q = 0. So, α = p = ±1 are the only units in K.
Therefore, w = 2 for d < −4.

Case(ii) If d = −4, then q = 1,−1 or 0.

If q = 0, then p = ±1. If q = 1, then p = 2. If q = −1, then p = −2.

Hence in Q(
√
−4) = Q(i), the only units are ±1 and ±

√
−1. Therefore,

w = 4.

Case(iii) K = Q(
√
−3). Here also q = 0, 1 or −1.

Substituting everything in equation (5.1) we get the feasible values of p in
Z, and thus eventually the units in the field K. The only units here are:
{±1,±(1

2
+
√
−3
2

),±(1
2
−
√
−3
2

)}. Hence w = 6.



Chapter 6

Ramification theory

Let K be a number field, A = OK the ring of integers of K, L an extension
of finite degree of K, and B = OL the integral closure of A in L (i.e., the
ring of integers of L).

The ideal POL = PB generated in B by a non-zero prime ideal P of A, is
not in general prime. It splits into a product of prime ideals, as stated by
Dedekind’s theorem, i.e., PB =

∏
i

P ei
i .

6.1 Preliminaries from rings and modules the-
ory

Let us now recall a few results from Ring and module theory.

Definition 6.1. Let A be an integral domain and let S be a multiplicatively
closed subset of A− {0} and 1 ∈ S.

Ring of fractions of A with respect to S or localisation of A at S, denoted
by S−1A is defined as {a

s
|a ∈ A, s ∈ S}.

S−1A is a commutative ring which contains A. If S = A \ {0}, then S−1A =
K. If S = {1}, or if it contains only units in A, then S−1A = A.

Proposition 6.1. Let A be an integral domain and let S be a multiplicatively
closed subset of A. Let A′ = S−1A.

(1) For any ideal I ′ of A′, it is true that (I ′ ∩ A)A′ = I ′. So, the mapping
I ′ 7−→ I ′ ∩ A is an increasing injection of the set of ideals of A′ into the set
of ideals of A.

83
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(2) The mapping P ′ 7−→ P ′ ∩ Ais an isomorphism of the partially-ordered
set (poset) of prime ideals of A′ on the poset of prime ideals P of A, which
satisfy P ∩ S = φ. The inverse mapping is P 7−→ PA′.

Corollary 6.1. If A is a Noetherian integral domain, then every ring of
fractions S−1A is Noetherian.

Proposition 6.2. Let R be an integral domain, A a subring of R, S a
multiplicatively closed subset of A − (0), and let B be the integral closure
of A in R. Then the integral closure of S−1A in S−1R is S−1B.

Corollary 6.2. If A is an integrally closed ring, then S−1A is integrally
closed.

Proposition 6.3. If A is a Dedekind ring, then every S−1A is a Dedekind
ring.

Proof. We know S−1A is Noetherian and integrally closed. Since when going
from the set of prime ideals of A to prime ideals of S−1A, we leave out the
prime ideals P whose P ∩S 6= φ (by Proposition 1 (2)). Thus, every non-zero
prime ideal of S−1A is maximal.

Proposition 6.4. Let A be a Dedekind ring. Let P be a non-zero prime ideal
of A. Let S = A− P . Then S−1A is a principal ideal ring. More precisely,
there exist a prime p ∈ S−1A = AP such that the non-zero ideals of S−1A
are of the form (pn), n ≥ 0.

Proof. Since P is the only non-zero prime ideal of A disjoint from S, the only
non-zero prime ideal of S−1A is Q = S−1P .

Since, S−1A is a Dedekind ring, its only non-zero ideals are of the form Qn,
n ≥ 0, due to the Dedekind’s theorem. (Let I 6= (0) be an ideal in AP . I =
product of prime ideals in AP = Qn for some n ≥ 0.

Let p ∈ Q−Q2. The ideal (p) ⊂ Q but (p) 6⊂ Q2. So, (p) = product of Q’s
= Qn if an only if n = 1. So, (p) = Q and (pn) = Qn for every n ≥ 0.

Thus S−1A is a principal ideal ring and all its ideals are of the form (pn),
n ≥ 0.

Proposition 6.5. Let A be an integral domain, S a multiplicatively closed
subset of A − (0) and let M be a maximal ideal of A, where M ∩ S = φ.
Then S−1A/MS−1A ∼= A/M .
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6.2 Splitting of prime ideals in an extension

Theorem 6.1. Let A be a Dedekind ring, K its field of fractions, L is an
extension of finite degree over K and A′ the integral closure of A in L. Let
characteristic of K = 0. Then A′ is a Dedekind ring and an A-module of
finite-type.

Proof. A′ is integrally closed by construction. It is Noetherian and an A-
module of finite-type. It remains to show that every prime ideal P ′ 6= (0) of
A′ is maximal.

Let x ∈ P ′ − {0} and consider an equation of integral dependence of x over
A, the degree of which is minimum, xn + an−1x

n−1 + · · · + a1x + a0 = 0,
ai ∈ A.

Then ao 6= 0. Also, a0 ∈ A′x∩A ⊂ P ′ ∩A. Thus, P ′ ∩A 6= (0). Since P ′ ∩A
is a maximal ideal of A, and A/(P ′ ∩ A) is a field.

But A/(P ′ ∩ A) may be identified with a subring of A′/P ′ is integral over
A/(P ′ ∩ A), (since A′ is an integral over A).

Thus A′/P ′ is a field, so P ′ is maximal.

Corollary 6.3. Along with the hypothesis of the previous theorem, if we
assume that A is principal, then A′ is a free A-module of rank n.

Let P be a non-zero prime ideal of A. Then BP is an ideal of B and its has
an expression of the form:

BP =

q∏
i=1

P ei
i ,

where Pi’s are distinct prime ideals of B and ei’s ≥ 0, by Dedekind’s theorem.

Proposition 6.6. The Pi’s are precisely those prime ideals D of B such that
D ∩ A = P .

Proof. For a prime ideal D of B, we have D ∩A = P if and only if BP ⊂ D .

Because, P ⊂ D implies BP ⊂ D .

Further, if BP ⊂ D , then PB∩A ⊂ D∩A. Thus, P ⊂ BP ∩A ⊂ D∩A. But
D ∩A is a prime ideal of A, which is a Dedekind ring. Therefore D ∩A = P .

Clearly, BP = P e1
1 P e2

2 . . . P em
m . So, BP ⊂ Pi for every i = 1, 2, . . . ,m. Thus,

from our equivalence, Pi ∩ A = P .
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Both A/P and B/Pi for 1 ≤ i ≤ m are fields. Since B is an A-module of
finite-type, B/Pi is a finite-dimensional vector space over A/P .

The residual degree of Pi over A, denoted by fi, is defined to be the
dimension of B/Pi over A/P as a vector space.

The exponent ei in BP = P e1
1 . . . P em

m is called the ramification index of
Pi over A.

Also, BP ∩A = P , because, P ⊂ BP ∩A. Also, BP ∩A = (P e1
1 . . . P em

m )∩A.
So, for each 1 ≤ i ≤ m, Pi ∩ A = P . Thus, BP ∩ A ⊂ P .

So, B/BP is a finite-dimensional vector space over A/P .

Theorem 6.2. With the preceding notions,
m∑
i=1

eifi = [B/BP : A/P ] = n,

where n denotes the degree of the extension L over K.

The above expression is also known as the fundamental identity about split-
ting of prime ideals.

Proof. For the first equality, note that B/BP = B/
m∏
i=1

P ei
i
∼=
∏
B/P ei

i (by

Chinese remainder theorem). So it suffices to show that [B/P ei
i : A/P ] = eifi.

From the definition of fi, we know that B/Pi is a field of degree fi over A/P .

Consider the sequence of ideals,

B ⊃ P1 ⊃ P 2
1 ⊃ . . . P e1

1 ⊃ P e1
1 P2 ⊃ . . . P e1

1 P e2
2 ⊃ · · · ⊃ P e1

1 . . . P em
m = BP

For each ri, P ri
i /P

ri+1
i is a B/Pi-module. Since there is no ideal between

P ri
i and P ri+1

i , it must have dimension 1 as a B/Pi-vector space. Hence,
dimension fi as a A/P -vector space.

Therefore each quotient in the chain

B ⊃ Pi ⊃ P 2
i ⊃ · · · ⊃ P ei

i

has dimension fi over A/P , and so the dimension of B/P ei
i is eifi.

The proof of the second equality is easy when B is a free A-module. For exam-
ple, if A is a principal ideal domain, then by Corollary 7.3, if {x1, x2, . . . , xn}
is a base of B as an A-module. Reduction modulo BP gives a base for B/BP
over A/P .

Now, let S be a multiplicative subset of A disjoint from P and such that
S−1A is principal (e.g., S = A− P ).
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Write B′ = S−1B and A′ = S−1A. Then B′ is the integral closure of A′ in
L, and PB′ =

∏
(PiB

′)ei .

Since, Pi ∩ A = P , Pi ∩ S = φ and PiB′ is a non-zero prime ideal of B′. So,
from the first part of the proof,

[B′/PB′ : A′/PA′] =
m∑
i=1

ei[B
′/PiB

′ : A′/PA′].

But, [A′/PA′ : A/P ] and [B/PiB
′ : B/Pi].

Therefore,
∑
eifi = [B′/PB′ : A′/PA′], but A′ is principal, and so, [B′/PB′ :

A′/PA′] = n. This completes the proof.

Example 6.1. (Cyclotomic fields)

Let p be a prime number and let ζ = ζpr be a primitive pr − th root of unity
in C. In this case, all the complex pr − th roots of unity are of the form ζj,
j = 1, 2, . . . , pr.

The primitive roots of unity are those for which j is not a multiple of p. The
number of primitive roots is ϕ(pr) = pr − pr−1, where ϕ is the Euler’s phi
function. These are the roots of the cyclotomic polynomial

F (X) =
Xpr − 1

Xpr−1 = Xpr−1(p−1) +Xpr−1(p−2) + · · ·+Xpr−1

+ 1.

Let e = pr−1(p − 1) and let ζ1, . . . , ζe be all the primitive pr − th roots of
unity. Since the constant term of F (X + 1) is p,

±p =
e∏
j=1

(ζj − 1).

Let OK be the ring of integers of K = Q[ζ]. Clearly, ζj ∈ OK and ζj − 1 ∈
OK(ζk − 1) for all j and k, since ζj = ζqk of ζk and ζqk − 1 = (ζk − 1)(ζq−1

k +
· · ·+ ζk + 1). Thus all ideals OK(ζk − 1) are same.

So, pOK = OK(ζ1− 1)e. Write pOK =
m∏
i=1

Peii , where Pi’s are prime ideals of

OK . The ei’s must be multiples of e.

But e ≥ [Q[ζ] : Q], so e ≥
m∑
i=1

eifi. Thus,

m = 1, e = e1, f1 = 1 and [Q[ζ] : Q] = e.
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In summary:

(i) [Q[ζ] : Q] = e = pr−1(p− 1).

(ii) OK(ζ1 − 1) is a prime ideal of OK of residual degree 1,

(iii) pOK = OK(ζ1 − 1)e.

6.3 The discriminant and ramification

Let PB =
m∏
i=1

P ei
i . A prime ideal P of A is said to ramify in B (or in L) if

any one of the ramification indices ei is ≥ 1.

In this section, we will characterise those prime ideals of A which ramify in
B. In particular, we want to show that only finitely many prime ideals of A
ramify in B. First we need some lemmas.

Lemma 6.1. Let A be a ring, let B1, . . . , Bq be rings containing A, which

are free A-modules of finite-type. Let B =
q∏
i=1

Bi be the product ring. Then

the discriminant is :

DB/A =

q∏
i=1

DBi/A.

Proof. We will prove the lemma for q = 2 and the rest will follow by induc-
tion.

So, for q = 2, i.e., B = B1 ×B2.

Let {x1, . . . , xm}, {y1, . . . , ym} be bases for B1, B2 as A-modules.

B1 is identified with B1 × (0) and B2 is identified with (0) × B2. We may
consider {(x1, 0), . . . , (xm, 0), (0, y1), . . . , (0, ym)} as a base for B = B1 × B2

over A.

By definition of product ring structure, xiyj = 0, so, Tr(xiyj) = 0.

Therefore,

D((x1, 0), . . . , (xm, 0), (0, y1), . . . , (0, ym)) = det

(
Tr(xixj) 0

0 Tr(yiyj).

)
So,

D((x1, 0), . . . , (xm, 0), (0, y1), . . . , (0, ym)) = det(Tr(xixj) · Tr(yiyj))
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= det(Tr(xixj)) · det(Tr(yiyj)) = D(x1, . . . , xm) ·D(y1, . . . , ym).

Lemma 6.2. Let A,B be rings, A ⊂ B and I be an ideal of A. Assume that
B is a free A-module with base {x1, . . . , xn}. For x ∈ B, x̄ be the residue
class of x in B (mod IB). Then {x̄1, . . . , x̄n} is a base of B/IB over A/I
and

D(x̄1, . . . , x̄n) = D(x1, . . . , xn).

Proof. Let x ∈ B. If the matrix of multiplication by x with respect to the
base {x1, . . . , xn} is (aij), where aij ∈ A for every i, j, then the matrix of
multiplication by x̄ with respect to the base {x̄1, . . . , x̄n} is (aij).

Thus, Tr(x̄) = Tr(x).

Let x = xixj, we get Tr(xixj) = Tr(xixj) = Tr(xixj). So,

D({x̄1, . . . , x̄n}) = det(Tr(xixj) = det(Tr(xixj))

= det(Tr(xixj)) = D(x1, . . . , xn).

Lemma 6.3. Let K be a field which is finite or characteristic of K is 0. Let
L be a finite dimensional (commutative) K-algebra. L is reduced, i.e., has
no non-zero nilpotent elements if and only if DL/K 6= (0).

Proof. Suppose L is not reduced. Let x ∈ L be a non-zero nilpotent element.
Let {x1, . . . , xn} be a base for L over K, such that x = x1.

Then x1 · xj is nilpotent for every j and multiplication by x1xj is a nilpotent
endomorphism of the vector space L over K. Thus, all the characteristic
values of this endomorphism are zero. So, Tr(x1xj) = 0.

The matrix (Tr(xixj)) has a row comprised entirely of zeroes. Hence,D(x1, . . . , xn) =
0, i.e., DL/K = 0.

Next suppose that L is reduced. Then the ideal (0) of L is expressible as a
finite intersection of prime ideals, i.e., there exist prime ideals P1, . . . , Pq in

OL such that (0) =
q⋂
i=1

Pi.

Since, L/Pi is an integral domain and a finite dimensional algebra overK, it is
a field. Hence, Pi is a maximal ideal of L and Pi+Pj = L for i 6= j. Therefore,
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L ∼=
q∏
i=1

L/Pi (by Chinese Remainder Theorem and since P1 ∩ · · · ∩ Pq =

P1 . . . Pq = (0)).

By Lemma 7.1, DL/K =
q∏
i=1

DL/Pi/K . But DL/Pi/K 6= (0) since K is a finite

field or a field of characteristic zero.

Therefore, DL/K 6= (0).

Definition 6.2. Let K and L be number fields with K ⊂ L. Let A and B be
the rings of integers of K and L, i.e., OK = A and OL = B. The discrimi-
nant of B over A (DB/A) is the ideal of A generated by the discriminants of
bases of L over K, which are contained in B.

Remark 6.1. If {x1, . . . , xn} is a base of L over K contained in B then
TrL/K(xixj) ∈ A. So, D(x1, . . . , xn) ∈ A. Thus, DB/A is an integral ideal of
A. It is non-zero as D(x1, . . . , xn) = (det(aij)

2 6= 0, where (aij) is the matrix
of multiplication of D(x1, . . . , xn) with respect to the given base.

Remark 6.2. When B is a free A-module (example, when A is principal),
we have already defined the discriminant DB/A as the ideal generated by
D(e1, . . . , en), where {e1, . . . , en} is an A-module base for B.

Our old definition coincides. Given any base {x1, . . . , xn} of L over K con-

tained in B, xi =
n∑
j=1

aijej, with aij ∈ A.

Therefore, D(x1, . . . , xn) = (det(aij))
2D(e1, . . . , en).

Theorem 6.3. Let the notations be as in the definition. In order that a
prime ideal P of A ramify in B, it is necessary and sufficient that it contain
the discriminant DB/A. Hence there are only finitely many prime ideals of A
which ramify in B.

Proof. Let PB = P e1
1 . . . P

eg
g , where P1, . . . , Pg are distinct prime ideals in B

and e1, . . . , eg are their ramification indices.

Suppose P is a ramified prime. Then ei > 1 for some i and thus the ring
B/P ei

i contains a non-zero nilpotent element (which may be taken to be any
element of P ei−1

i −P ei
i ), and hence so does B/PB. So, B/PB is not reduced

and thus D(B/PB)/(A/P ) = (0) (by the previous lemma).

Now put S = A − P , A′ = S−1A, B′ = S−1B, and P ′ = S−1P . Then A′ is
a principal ideal ring, B′ is a free A′-module, A/P ∼= A′/P ′, and B/PB ∼=
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B′/P ′B′. Therefore, writing {e1, . . . , en} for an A′-module base of B′, we
know that D(B/PB)/(A/P ) = (0) if and only if D(e1, . . . , en) ∈ P ′ (because of
Lemma 7.2).

If D(e1, . . . , en) ∈ P ′ and if {x1, . . . , xn} is a base for L over K contained in
B, then xi =

∑
a′ijej, with a′ij ∈ A′ (because B ⊂ B′). So,

D(x1, . . . , xn) = det(a′ij)
2D(e1, . . . , en) ∈ P ′.

Since P ′ ∩ A = P , we can say that D(x1, . . . , xn) ∈ P and DB/A ⊂ P .

Conversely, if DB/A ⊂ P then D(e1, . . . , en) ∈ P ′ (since we can write ei =
yis
−1, with yi ∈ B and s ∈ S, for 1 ≤ i ≤ n. Thus,

D(e1, . . . , en) =
1

s2n
D(y1, . . . , yn) ∈ A′DB/A ⊂ A′P = P ′.)

The second assertion follows from the fact that DB/A is a non-zero integral
ideal of A and thus Dedekind’s theorem applies.

Corollary 6.4. Let K be a number field. A rational prime p ramifies if and
only if p divides dK. In particular, only finitely many primes of Z ramify in
K.

6.4 Galois extensions of number fields

We will recall a few results from Galois theory to facilitate the rest of the
chapter.

Given a field L and a set G of automorphisms of L, the set x ∈ L such that
σ(x) = x, for every σ ∈ G is a subfield of L, called the fixed field of G.

For an extension L of a field K, the set of K-automorphisms of L is a group
under composition of mappings.

Theorem 6.4. Let L be an extension of finite degree n of a field K, where
K is finite or of characteristic zero. Then the following are equivalent:

(A) K is fixed field of the group G of K-automorphisms of L.

(B) For every x ∈ L the minimal polynomial of x over K has all its roots in
L.

(C) L is generated by the roots of a polynomial with coefficients in K.
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Under the above conditions, the group G of K-automorphisms of L is of order
n.

Definition 6.3. If the above conditions are satisfied, L is called a Galois
extension of K and G is called the Galois group of L over K.

If G is abelian (respectively, cyclic), L is called an abelian (respectively,
cyclic) extension of K.

Corollary 6.5. Let K be a finite field or of characteristic zero. Let dimK(L) =
n. If H is a group of automorphisms of L such that K is the fixed field of H
and |H| = n, then L is a Galois extension of K and Gal(L/K) = H.

Theorem 6.5. (Fundamental theorem of Galois theory) Let K be a
field which is finite or of characteristic zero. Let L be a Galois extension of
K and G = Gal(L/K). To any subgroup G′ of G, let k(G′) be the fixed field
of G′. To any subfield K ′ of L containing K, let g(K ′) be the subgroup of G
consisting of all K ′-automorphisms of L.

(A) The mappings g and k are bijections and are inverses of one another.
They are both decreasing with respect to the inclusion relations on G, i.e.,
they reverse inclusions. The field L is a Galois extension of any intermediate
field K ′ (i.e., K ⊂ K ′ ⊂ L).

(B) In order that an intermediate field K ′ be a Galois extension of K, it is
necessary and sufficient that g(K ′) be a normal subgroup of G. In this case,
Gal(K ′/K) ∼= G/g(K ′).

Example 6.2. (Quadratic extensions) Let dimK(L) = 2. L = K[x] for
some x ∈ L which is a root of X2 − d, where d is the discriminant and is
square-free. The other root of this polynomial is −x. There exists a non-
trivial K-automorphism such that σ(x) = −x, i.e., σ(a+ bx) = a− bx, where
a, b ∈ K.

Clearly, σ2 = 1 and K is the fixed field of σ. Thus L is a Galois extension of
K with cyclic Galois group {1, σ}.

Example 6.3. (Cyclotomic extensions) Let K be a field of characteristic
zero. Let ζn be a primitive n− th root of unity in an extension of K, and let
L = K(ζn). The field L is called a cyclotomic extension of K.

The minimal polynomial of ζn over K divides Xn−1. So, its roots are n− th
roots of unity and consequently power of ζn. Thus L is a Galois extension of
K by the previous theorem.

Let G = Gal(L/K). Any σ ∈ G is determined by its effect on ζn. More
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precisely, σ(ζn) is a power ζj(σ)
n of ζn, where j(σ) is uniquely determined

modulo n.

For σ, τ ∈ G, σ(τ(ζn)) = σ(ζ
j(τ)
n ) = ζ

j(τ)j(σ)
n . So, j(στ) ≡ j(σ)j(τ) (mod n).

In other words, σ 7−→ j(σ) defines a homomorphism of G −→ (Z/nZ)∗.
Since j(σ) determines σ, this homomorphism is injective, and G is abelian.

Thus any cyclotomic extension is abelian. If n is a prime p, this extension is
even cyclic and G is isomorphic to a subgroup of (Z/pZ)∗ = F∗p.

Example 6.4. (Finite fields) Let Fq be a finite field (q = ps, with p prime).
Any extension of finite degree of Fq is of the form Fqn . Its degree is n.

The mapping x 7−→ xq is an automorphism of Fqn with Fq as its fixed field.
For any x ∈ Fqn , we have σj(x) = xq

j and σn = 1 (since x ∈ Fqn satisfies the
relation xqn = x).

On the other hand, for 1 ≤ j ≤ n − 1, σj 6= 1 since if j < n, there exists
x ∈ Fqn such that xqj 6= x. (Suppose for j < n and σj(x) = xq

j
= x, for

every x ∈ Fqn . Hence, every x ∈ Fqn satisfies P (X) = Xqj − 1, thus the
number of solutions of P (X) ≥ qn. Also since Fqn is a field, so the number
of solutions of P (X) ≤ qn. This is a contradiction.)

Thus {1, σ, . . . , σn−1} is a cyclic group of order n.

According to the Corollary 6.5, Fqn is a cyclic extension of degree n of Fq.
Its Galois group has a canonical generator, the mapping x 7−→ xq. This
mapping is called the Frobenius automorphism.

Now assume L is Galois over K, with G = Gal(L/K). Let P be a prime ideal
of OK . If P is lying above P in OL, i.e. P | POL and σ ∈ G, then σ(P) is a
prime ideal above P . Indeed, σ(P) ∩ OK ⊂ K, thus σ(P) ∩ OK = P ∩ OK
since K is fixed by σ.

Theorem 6.6. With the hypothesis as above, let

POL =

g∏
i=1

Peii

be the factorisation of POL in OL. Then G acts transitively on the set
{P1, . . . ,Pg}. Furthermore, we have that

e1 = · · · = eg = e,

f1 = · · · = fg = f, and
[L : K] = efg.
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Proof. To show G acts transitively, let P be one of the Pi. We need to prove
that there exists σ ∈ G such that σ(Pj) = P , for Pj any other of the Pi’s.

We have seen previously that there exists β ∈ P such that βOLP−1is an
integral ideal coprime to POL. The ideal

I =
∏
σ∈G

σ(βOLP−1)

is an integral ideal of OL (since βOLP−1 is), which is again coprime to POL
(since σ(βOLP−1) and σ(POL) are coprime and σ(POL) = σ(P )σ(OL) =
POL).

Thus I can be rewritten as

I =

∏
σ∈G

σ(β)OL∏
σ∈G

σ(P)
=
NL/K(β)OL∏
σ∈G

σ(P)
,

and we have that
I
∏
σ∈G

σ(P) = NL/K(β)OL.

Since NL/K(β) =
∏
σ∈G

σ(β), β ∈ P and one of the σ is identity, so we have

that NL/K(β) ∈ P .

Furthermore, NL/K(β) ∈ OK since β ∈ OL, and we get that NL/K(β) ∈
P ∩ OK = P .

Hence, P divides the right hand side of the above equation, and thus the lest
hand side. Since I is coprime to P we get that P divides

∏
σ∈G

σ(P).

In other words, using the factorisation of P , we have that

∏
σ∈G

σ(P) is divisible by POL =

g∏
i=1

Peii

and each of the Pi has to be among {σ(P)}σ∈G.

To show that all the ramification indices are equal, note that from the first
part we know that there exists σ ∈ G such that σ(Pi) = Pk, i 6= k. Now we
have that

σ(POL) =

g∏
i=1

σ(Pi)e1 = POL =

g∏
i=1

Peii ,
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where the second equality holds since P ∈ OK and L over K is Galois. By
comparing the two factorisations of P and its conjugates, we get that ei = ek.

That all the inertial degrees are equal follows from the fact that σ induces
the following field isomorphism

OL/Pi ∼= OL/σ(Pi).

Finally we have that
|G| = n = [L : K] = efg.

6.4.1 Decomposition and inertia groups

In this section, A is a Dedekind domain, K is the field of fractions of A and
characteristic of K = 0. Let K ′ be a Galois extension of degree n of K, and
let A′ be the integral closure of A in K ′.

Let x ∈ A′ and let σ ∈ G. Applying σ to an equation of integral dependence
of x over A shows that σ(x) ∈ A′.

Also, A′ is stable under G, i.e., σ(A′) = A′ for all σ ∈ G (since, σ(A′) ⊂ A′

and also, σ−1(A′) ⊂ A′, so, A′ = σσ−1(A′) ⊂ σ(A′)).

On the other hand, if P is a maximal ideal of A and P ′ a maximal ideal of
A′ such that P ′ ∩ A = P ( i.e., P ′ appears in the factorisation of PA′ into a
product of prime ideals in A′). Then, σ(P ′)∩A = P . So, σ(P ′) also appears
in the expression for PA′, with the same exponent as P ′.

We shall call P ′ and σ(P ′) are conjugate prime ideals of A′. We are going
to show that all the prime ideals in the prime factorisation of PA′ in A′ are
conjugate.

Proposition 6.7. From Theorem 7.6, we can say that the maximal ideals
P ′i of A′ which appear in the expression for PA′ as a product of prime ideals
in A′ are all conjugate. They have the same residual degree f and the same

ramification index e. Thus, PA′ = (
g∏
i=1

P ′i )
e and n = efg.

Proof. Suppose if, P ′ be one of the Pi’s and assume that another of the Pi’s,
which we shall denote by Q′, is not a conjugate to P ′.

Since Q′ and σ(P ′) for σ ∈ G are maximal and distinct, σ(P ′) 6⊂ Q′. Now
we need the following lemma.
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Lemma 6.4. Let R be a ring, P1, . . . , Pq a finite set of prime ideals of R,
and let I be an ideal of R such that I 6⊂ Pi for any index i. Then there exists
b ∈ I such that b ∈ Pi for any i.

Proof. Without loss of generality, suppose Pj 6⊂ Pi for i 6= j. Let xij ∈ Pj−Pi
for i 6= j, 1 ≤ i, j ≤ q. Since I 6⊂ Pi, there exists ai ∈ I − Pi. Put
bi = ai

∏
i 6=j

xij. Then bi ∈ I, bi ∈ Pj for i 6= j and bi /∈ Pi (since Pi is prime).

Thus, b = b1 + · · ·+ bq ∈ I −
q⋃
i=1

Pi.

Returning to the previous discussion, from the lemma we see that there exists
x ∈ Q′ such that x /∈ σ(P ′) for all σ ∈ G.

Consider the norm of x, N(x) =
∏
τ∈G

τ(x). Since τ(x) ∈ A′ for every τ ∈ G,

we see that N(x) ∈ Q′, in fact N(x) ∈ Q′ ∩ A = P . Also, x /∈ τ−1(P ′).
Hence, τ(x) /∈ P ′ for any τ ∈ G. Since P ′ is prime, N(x) /∈ P ′ and this
contradicts N(x) ∈ P .

Now let P ′ be a maximal ideal of A′ such that P ′ ∩ A = P .Those σ ∈ G
for which σ(P ′) = P ′ form a subgroup D of G, called the decomposition
group of P ′, denoted by D(P ′).

If g denotes the number of conjugates of P ′, then |G/D| = g = |G||D|−1,
where G/D = {σ ∈ G|σ(P ′) 6= P ′} = {σ ∈ G|σ1(x) = σ2(x) for every x ∈
P ′, then[σ1] = [σ2]}. So, card(D) = n

g
= ef .

For σ ∈ D, the relations σ(A′) = A′ and σ(P ′) = P ′ imply σ induces an auto-
morphism σ : A′/P ′ −→ A′/P ′, where x (mod P ′) 7−→ σ(x) (mod P ′). This
map is well-defined because x ≡ y (mod P ′) implies σ(x) ≡ σ(y) (mod P ′).
So, σ is an A/P -automorphism.

Consider the mapping D(P ′) −→ AutA/P (A′/P ′) such that σ 7−→ σ. This
map is a group homomorphism.

Consider the kernel (I) of this map, σ(x̄) = IdA′/P ′(x̄) = x̄, for every x ∈
A′/P ′. So, σ(x) (mod P ′) = x (mod P ′) and thus, σ(x)− x ∈ P ′, for every
x ∈ A′. Hence, I = {σ ∈ D|σ(x)− x ∈ P ′ for every x ∈ A′}.

Therefore, I is a normal subgroup of D, called the inertia subgroup of P ′.

Proposition 6.8. With the same notations as above, assume that A/P is
finite or of characteristic zero. Then A′/P ′ is a Galois group of degree f of
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A/P , and the mapping σ 7−→ σ is a surjective homomorphism of D on the
Galois group of A′/P ′ over A/P . Moreover, card(I) = e.

Proof. Let KD be the fixed field of D. Let AD = A′∩KD and PD = P ′∩AD
be the prime ideal.

According to the previous proposition and the definition of D, P ′ is the only
prime factor of A′PD.

Put A′PD = (P ′)e
′ and write f ′ for the residual degree of [A′/P ′ : AD/PD].

According to the fundamental identity of the splitting of prime ideals, we
have e′f ′ = [K ′ : KD] = card(D) = ef .

Since A/P ⊂ AD/PD ⊂ A′/P ′. So, f ′ ≤ f . Also since PAD ⊂ PD, we get
e′ ≤ e.

Therefore, e = e′ and f = f ′ and thus A/P ∼= AD/PD.

Now let x̄ be a primitive element for A′/P ′ over A/P and let x ∈ A′ be a
representative of x̄. Let Xr + ar−1X

r−1 + · · · + ao = P (X) be the minimal
polynomial for x over KD.

We know that ai ∈ AD. The roots of P (X) are all of the form σ(x) with
σ ∈ D.

The reduced polynomial P̄ (X) = Xr+ ār−1X
r−1 + · · ·+ ā0 has its coefficients

in A/P and the roots of P̄ (X) are all of the form σ̄(x̄) with σ ∈ D.

Consequently, A′/P ′ contains all conjugates of x̄ over A/P and A′/P ′ is a
Galois extension of A/P .

Also, since every conjugate of x̄ over A/P is of the form σ̄(x̄), every A/P -
automorphism of A′/P ′ is of the form σ̄ for some σ ∈ D. Thus the Galois
group of A′/P ′ over A/P may be identified with D/I.

Since the order of [A′/P ′ : A/P ] = f , so, card(I) = e.

Corollary 6.6. In order that P not ramify in A′ it is necessary and sufficient
that the inertia group I of P ′ (of any P ′ over P ) be trivial.

Remark 6.3. Write DP ′ , IP ′ for the decomposition and inertia groups of
the maximal ideal P ′ ⊂ A′. For a conjugate ideal σ(P ′), for σ ∈ G

Dσ(P ′) = σDP ′σ
−1 and Iσ(P ′) = σIP ′σ−1.

To prove the above statement, note that for τ ∈ DP ′ , we have

στσ−1(σ(P ′)) = στ(P ′) = σ(P ′).
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So, σDP ′σ
−1 ⊂ Dσ(P ′). For the reverse inclusion, let τ ∈ Dσ(P ′). So,

τ(σ(P ′)) = σ(P ′), i.e., σ−1τσ(P ′) = σ−1σ(P ′) = P ′.

So, σ−1τσ ∈ DP ′ . Thus, τ ∈ σDP ′σ
−1.

Similarly, for τ ∈ IP ′ and x ∈ A′,

στσ−1(x)− x = στ(σ−1(x))− σσ−1(x) = σ(τ(σ−1(x)− σ−1(x)) ∈ σ(P ′).

So σIP ′σ−1 ⊂ Iσ(P ′). The reverse inclusion follows from a similar argument.

So when K ′ is an abelian extension of K, the groups Dσ(P ′) for σ ∈ G are all
equal, and so are Iσ(P ′). They only depend on the ideal P of the ring A.

6.5 The Frobenius automorphism

Let K,K ′ be number fields such that K ′ is a Galois extension of K with
Galois group G. Let A = OK and A′ = OK′ . Let P be a maximal ideal of A
which does not ramify in A′, and let P ′ be a prime factor of PA′.

The inertia group (I) of P ′ consists only of the identity of G alone and
its decomposition group D is canonically isomorphic to the Galois group of
A′/P ′ over A/P .

But the Galois group of A′/P ′ over A/P is cyclic with a canonical generator
σ̄ : x̄ 7−→ x̄q, where q = card(A/P ).

Thus, D itself is cyclic with a canonical generator σ defined by the relation
σ(x) ≡ xq (mod P ′) for any x ∈ A′. This generator is called the Frobenius
automorphism of P ′. We denote it by (P ′, K ′/K).

For τ ∈ G, we have (as in the remark),

(τ(P ′), K ′/K) = τ(P ′, K ′/K)τ−1.

In particular, if K ′ is an abelian extension, (P ′, K ′/K) depends only on the
ideal P of A. In this case we write, (K

′/K
P

).

Proposition 6.9. With the preceding hypothesis and notations, let F be an
intermediate field (K ⊂ F ⊂ K ′) and write f for the residual degree of P ′∩F
over K. Then :

(a) (P ′, K ′/F ) = (P ′, K ′/K)f ,

(b) If F is Galois over K, the restriction of (P ′, K ′/K) to F equals (P ′ ∩
F, F/K).
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Proof. (a) Put σ = (P ′, K ′/K). By definition, σ(P ′) = P ′ and σ(x) ≡ xq

(mod P ′) for every x ∈ A′, where q = card(A/P ).

Thus σf (P ′) ≡ xq
f

(mod P ′) for every x ∈ A′. By definition of f , qf is the
cardinality of the residual field (A′ ∩ F )/(P ′ ∩ F ). Also, the decomposition
group of P ′ over F is obviously a subgroup of the decomposition D of P ′
over K. It is of order

[A′/P ′ : (A′ ∩ F )/(P ′ ∩ F )] =
1

f
[A′/P ′ : A/P ] =

1

f
card(D).

Since D is cyclic and generated by σ, the only subgroup of D of order card(D)
f

is generated by σf . This completes the proof of (a).

(b) Suppose F is Galois over K and write σ′ for the restriction of σ to F .

Since σ(P ′) = P ′, it follows that σ(P ′ ∩ F ) = P ′ ∩ F and σ′ belongs to the
decomposition group of P ′ ∩ F over K. Also, it is clear that σ′(x) ≡ xq

(mod P ′ ∩ F ), for every x ∈ A′ ∩ F , with q = card(A/P ).

6.5.1 Application to cyclotomic fields

We are going to utilise the theory we just developed to present another proof
of irreducibility of the cyclotomic polynomial.

Theorem 6.7. Let ζ be a primitive complex n− th root of unity. Then:

(a) No prime number which does not divide n ramifies in Q[ζ].

(b) Q[ζ] is an abelian extension of Q of degree ϕ(n) and with Galois group
isomorphic to (Z/nZ)∗.

Proof. (a) Let F (X) be the minimal polynomial of ζ overQ and let deg(F (X)) =
d, i.e. d = dimQ(Q[ζ]). The polynomial F (X)|Xn − 1. Let Xn − 1 =
F (X)G(X). So, nXn−1 = F ′(X)G(X) + F (X)G′(X).

Put X = ζ in the above equation. We get, nζn−1 = F ′(ζ)G(ζ). Since ζ is a
unit of Q[ζ], it is of norm ±1.

Upon taking norms, N(nζn−1) = N(F ′(ζ)G(ζ)), i.e., nd(±1) = N(F ′(ζ))N(G(ζ)).
We also know that the discriminant D(1, ζ, . . . , ζd−1) = ±N(F ′(ζ)). Hence,
N(F ′(ζ))|nd, i.e., D(1, ζ, . . . , ζd−1)|nd.

From theorem, in order that a prime ideal P of A ramify in B, it is necessary
and sufficient that it contain the discriminant DB/A. There are only finitely
many prime ideals of A which ramify in B.
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Therefore, no prime number which does not divide n, ramifies in Q[ζ]. This
proves (a).

(b) Recall that Q[ζ] is an abelian extension of Q and that there is an injective
homomorphism j of the Galois group G of Q[ζ] over Q into (Z/nZ)∗.

More precisely, the element σ ∈ G raises all the n− th roots of unity to the
power j(σ). Let p be a prime number which does not divide n.

By (a), the Frobenius automorphism Q[ζ]/Q
p

is defined, denote it by σp.

Writing A for the ring of integers of Q[ζ] and P for an arbitrary prime factor
of pA′, we obtain, from the definition of Frobenius automorphism the relation
σp(x) ≡ xp (mod P ) for every x ∈ A. In particular, let j = j(σp), we get
ζj ≡ ζp (mod P ).

Let P (X) = Xn − 1 =
∏

0≤r≤n−1

(X − ζr). Then recall that

∏
0≤r≤n−1;r 6≡p (mod n)

(ζp − ζr) = P ′(ζp) = nζp(n−1).

So n is relatively prime to p, since P ∩ Z = pZ and since ζ is a unit in the
ring of integers of Q[ζ], we may conclude from the relation P ′(ζp) = nζp(n−1)

that,
∏

0≤r≤n−1
r 6≡p (mod n)

(ζp − ζr) /∈ P .

The relation ζ≡ζp (mod P ) thus implies that j represents the residue class
of p modulo n. Hence j(G) contains the residue class modulo n of all prime
numbers p which do not divide n.

This means, j(G) = (Z/nZ)∗. This proves (b).

6.5.2 Proof of Quadratic reciprocity laws

Let q be an odd prime. LetK be the cyclotomic field generated by a primitive
q − th root of unity in C. The GalQ(K) = G ∼= F∗q. It is cyclic and of even
order q − 1.

There is a unique subgroup H of index 2, which corresponds to the subgroup
of squares (F∗q)2 ⊂ F∗q. Thus, K contains a unique quadratic field F.

No prime number p 6= q ramifies in F for, if it did, it would ramify in K.
This would contradict the theorem in the previous section.
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Set

F = Q(
√
q) if q ≡ 1 (mod 4)

F = Q(
√
−q) if q ≡ 3 (mod 4).

Note that when q ≡ 3 (mod 4), then −q ≡ 1 (mod 4). Put q∗ = (−1)
q−1

2 q.
So, F = Q[

√
q∗].

Let p be a prime number and p 6= q. Write σp for the Frobenius automorphism
(K/Q

p
). The restriction to F is (F/Q

p
). It is the identity if σp ∈ H, i.e., if the

exponent j(σp) = residue class of p (mod q) is a square in F∗q. Otherwise, it
is the nontrivial automorphism of F.

In other words, identifying the Galois group G/H of F over Q with {+1,−1}.
We have, (

F/Q
p

)
=

(
p

q

)
, (6.1)

by the definition of Legendre symbol.

On the other hand, theory regarding splitting of primes below in an extension
F tells that:

1. If p splits in F, then
(

F/Q
p

)
= Id automorphism.

2. If p remains a prime in F, then
(

F/Q
p

)
is the non-trivial automorphism.

If p is odd, (
F/Q
p

)
=

(
q∗

p

)
. (6.2)

Comparing the equations (6.1) and (6.2), we get

(
p

q

)
=

(
q∗

p

)
=

(
−1

p

) q−1
2
(
q

p

)
.

But, (
−1

p

)
= (−1)

p−1
2 .

Thus, (
p

q

)
= (−1)

(p−1)(q−1)
4

(
q

p

)
.
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For the case p = 2,

2 splits in F if q∗ ≡ 1 (mod 8),

2 remains a prime in F if q∗ ≡ 5 (mod 8).

However, (−1)
q2−1

8 = (−1)
(q∗)2−1

8 = +1 if q∗ ≡ 1 (mod 8) and = −1 if q∗ ≡ 5
(mod 8). Thus, (

F/Q
2

)
= (−1)

q2−1
8 . (6.3)

So, from the equations (6.1) and (6.3), we get(
2

q

)
= (−1)

q2−1
8 .



Chapter 7

Dirichlet’s class number formula

We begin this chapter, by recalling a few facts about the Riemann zeta
function.

Definition 7.1. The Riemann zeta function, denoted by ζ(s) is defined
for all <(s) > 1 by the convergent series

ζ(s) :=
∑
n≥1

1

ns
.

Theorem 7.1. (Euler product) The above series converges absolutely for
all <(s) > 1 and there ζ(s) can be written as an infinite product

ζ(s) =
∏
p∈N

(
1− 1

ps

)−1

,

where the product is taken over all prime numbers p ∈ N.

Theorem 7.2. The Riemann zeta function has a meromorphic extension to
the whole complex plane with a simple pole at s = 1 and no other poles. The
residue of ζ− function at s = 1 is 1, i.e.,

lim
s→1+

(s− 1)ζ(s) = 1.

7.1 Dedekind zeta function

Let K be an algebraic number field of degree n. The group HK of ideal
classes of K is a finite group of order h = hK . In this chapter, we will try to
obtain a formula for h when K is a quadratic field.

103
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Let C0 = 1, C1, . . . , Ch−1 denote the different ideal classes. For each class C,
we define the zeta function of C, denoted by ζK(s, C) as

ζK(s, C) :=
∑

I(6=0)∈C

1

N(I)s
.

The summation is over all non-zero integral ideals I of C. For simplicity here
we take s > 1, but the sum exists for an s ∈ C such that <(s) > 1.

The zeta function of the filed K, called the Dedekind zeta function and
denoted by ζK(s), is defined by

ζK(s) :=
∑
C∈HK

ζK(s, C) =
∑
I 6=0

1

N(I)s
.

The summation is now over all non-zero integral ideals of K.

Proposition 7.1. The Dedekind zeta function ζK(s) converges absolutely for
s > 1.

Proof. Let x > 0 be a real number. We want to first show that∑
N(I)≤x

1

N(I)s
≤

∏
N(P )≤x

(
1− 1

N(P )s

)−1

, (7.1)

the product being over all prime ideals P with N(P ) ≤ x.

Now, (
1− 1

N(P )s

)−1

= 1 +
1

N(P )s
+

1

N(P )2s
+ . . . (7.2)

By Dedekind’s theorem, any integral ideal I can be written uniquely as a
product of prime ideals. Further if N(I) ≤ x then every prime divisor P of
I satisfies N(P ) ≤ x.

So, (7.1) follows from multiplying the series in (7.2) for all N(P ) ≤ x.

Also, ∏
N(P )≤x

(
1− 1

N(P )s

)−1

−
∑

N(I)≤x

1

N(I)s
=
∑

N(I)>x

1

N(I)s
, (7.3)

where the last summation is over the integral ideals I of norm > x, all of
whose prime divisors are of norm ≤ x.

Any prime ideal P contains a unique prime number p ∈ Z. We have N(P ) =
pf for a certain integer f ≥ 1 so that pf ≤ x if N(P ) ≤ x.
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Also there are at most n distinct prime ideals P1, . . . , Pg, with g ≤ n con-
taining a given p. In fact, they are uniquely determined by the equation

pOK = P e1
1 . . . P eg

g ,

and

pn = N(pOK) =

g∏
i=1

N(Pi)
ei =

g∏
i=1

pfiei ≥ pg.

Hence (7.1) gives ∑
N(I)≤x

1

N(I)s
≤
∏
p≤x

(
1− 1

ps

)−n
,

(we can create the various norms of N(I)−s by choosing the required part
from each product).

Since the product
∏

(1− 1
ps

)−1 is absolutely convergent for s > 1, the series∑
1

N(I)s
converges for s > 1. This completes the proof of the proposition.

Remark 7.1. If we now let x → ∞ in equation (7.3) we obtain the Euler
product for ζK(s), viz., ζK(s) =

∏
P

(1 − 1
N(P )s

)−1. This equality in fact holds

for s ∈ C and Re(s) > 1.

Remark 7.2. The Euler product is in fact a more general phenomenon of the
under lying multiplicative structure. If {am} is a sequence of complex numbers

with a1 = 1 amk = amak for all integers m, k ≥ 1, and if
∞∑
m=1

|am| <∞, then

∞∑
m=1

am =
∏
p

(1− ap)−1 .

In particular, for Re(s) > 1, we have

ζ(s) =
∞∑
m=1

1

ms
=
∏
p

(
1− 1

ps

)−1

.

We now recall the Wiener - Ikehara Theorem. Consider the following
general statement.
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Theorem 7.3. Let A(x) be a non-negative, monotonic non-decreasing func-
tion of x, defined for 0 ≤ x <∞. Suppose that

∞∫
0

A(x)e−xsdx

converges for Re(s) > 1 to the function f(s) and that , for some non-negative
integer c,

f(s)− c

s− 1

has an extension as a continuous function for Re(s) ≤ 1. Then the limit as
x→∞ of e−1A(x) is equal to c.

An important application of the theorem is to Dirichlet series of the form∑
n≥1

an
ns
,

where an is non-negative. If the series converges to an analytic function in
Re(s) ≥ b, with a simple pole of residue c at s = b, then∑

n≤x

an ∼
c

b
xb.

Applying this Dirichlet series version to the logarithmic derivative of the
Riemann zeta function, where the coefficients in the Dirichlet series are values
of the von Mangoldt function, it is possible to deduce the Prime number
theorem from the fact that the Riemann zeta function has no zeroes on the
line <(s) = 1.

7.2 Class number formula for quadratic num-
ber fields

In this section,K stands for a quadratic number field, unless otherwise stated.

Definition 7.2. Let K be a quadratic number field with discriminant d. Then
the Dirichlet L-function Ld(s) defined for all s > 1 is given by

Ld(s) =
∑
n≥1

(
d

n

)
1

ns
.
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So Remark 7.1 applied to am =
(
d
m

)
1
ms

gives us

Ld(s) =
∑
m≥1

(
d

m

)
1

ms
=
∏
p

(
1−

(
d

p

)
1

ps

)−1

.

We will now state the Dirichlet class number formula for quadratic fields and
then prove the propositions required to arrive at the result.

Theorem 7.4. (Dirichlet) Let K be a quadratic field of discriminant d. Let
h be the class number of K. Then we have

h =

{ √
d

2logη
Ld(1) if d > 0

w
√
d

2π
Ld(1) if d < 0.

Here w counts the number of roots of unity in case of the imaginary quadratic
fields and η > 1 is the fundamental unit in case of real quadratic fields.

Before proving this, we need to relate ζK(s) with the Riemann zeta function.

Proposition 7.2. For s > 1, we have

ζK(s) = ζ(s)Ld(s),

and hence holds for all complex number 6= 1.

Proof. We start with the Dirichlet L-function. We know that for all n ∈ N,
the symbol ( d

n
) for quadratic reciprocity is −1, 0, or 1 and so |( d

n
)| ≤ 1. Hence

Ld(s) converges absolutely for s > 1.

Now note that since the symbol ( d
n
) is multiplicative, for s > 1 we can rewrite

the L-series in Euler product form so that

Ld(s) =
∏
p∈N

(
1−

(
d

p

)
1

ps

)−1

=
∏

( dp)=+1

(
1− 1

ps

)−1 ∏
( dq )=−1

(
1 +

1

qs

)−1 ∏
( dr )=0

1,

where p, q, r are all prime numbers.

Then we can perform the same splitting of the Euler product for the Riemann
zeta function to get

ζ(s)Ld(s) =
∏

( dp)=+1

(
1− 1

ps

)−2 ∏
( dq )=−1

(
1 +

1

qs

)−1(
1− 1

qs

)−1 ∏
( dr )=0

(
1− 1

rs

)−1
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=
∏

( dp)=+1

(
1− 1

ps

)−2 ∏
( dq )=−1

(
1− 1

q2s

)−1 ∏
( dr )=0

(
1− 1

rs

)−1

.

But we know that, if (d
p
) = +1, then p split and there exist distinct prime

ideals P1, P2 ⊂ OK such that pOK = P1P2. Taking the norm givesN(P1P2) =
N(P1)N(P2) = N(pOK) = p2. But both ideals are prime and hence N(Pi) 6=
1 for i = 1, 2. Therefore, N(P1) = N(P2) = p.

If (d
q
) = −1, then q remains a prime and qOK = Q is a prime ideal, so

N(Q) = N(qOK) = q2.

Finally, if (d
r
) = 0, then r is ramified and there exists a prime ideal R ⊂ OK

such that rOK = R2. Therefore, N(R) = r.

Using these facts, we can write the Euler product in terms of norms of ideals:

ζ(s)Ld(s) =
∏

( dp)=+1

(
1− 1

N(P1)s

)−1(
1− 1

N(P2)s

)−1 ∏
( dq )=−1

(
1− 1

N(Q)s

)−1

∏
( dr )=0

(
1− 1

N(R)s

)−1

.

But since every prime ideal in OK must be one among the three cases men-
tioned above, every prime ideal must occur only once in the above product.
Therefore, we can simplify it to

ζ(s)Ld(s) =
∏

P⊂OK

(
1− 1

N(P )s

)−1

.

But we know from Proposition 7.1 that the above product is ζK(s) for all
s > 1. Therefore, ζK(s) = ζ(s)Ld(s).

Now we encounter a constant, known as the Dirichlet structure constant κ
for a quadratic field K with discriminant d. We first need a lemma.

Lemma 7.1. Let Ω be a bounded open set in the plane R2. For X > 0, let

ΩX = {ξ = (ξ1, ξ2) ∈ R2|
(
ξ1

X
,
ξ2

X

)
∈ Ω}.

Let NΩ(X) denote the number of lattice points in ΩX . Then, limX→∞
NΩ(X)
X2 =∫∫

Ω

dξ1dξ2 = area of Ω, provided that this integral exists in the sense of

Riemann.
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Proof. Divide the plane into squares S of side 1
X

parallel to the coordinate
axes. For any S, let P (S) denote the point whose coordinates have smallest
values (the lower-left vertex).

Clearly, NΩ(X) = {number of squares S | P (S) ∈ Ω}. Now if N1, N2 denote,
respectively, the number of S ⊂ Ω and S ∩ Ω 6= φ, then by the definition of
Riemann integral, N1

X2 →
∫∫
Ω

dξ1dξ2 and N2

X2 →
∫∫
Ω

dξ1dξ2.

Since N1 ≤ NΩ(X) ≤ N2, the result follows because in Riemann integration,
f ≤ g implies

∫
f ≤

∫
g.

Theorem 7.5. Let K be a quadratic field with discriminant d and w the
number of roots of unity in K. Let C be an ideal class of K and N(X,C)
the number of non-zero integral ideals I ∈ C with N(I) < X. Then

lim
X→∞

N(X,C)

X
= κ,

exists and we have

κ =


2logη√

d
if d > 0

2π

w
√
|d|

if d < 0.

Proof. Let J be an integral ideal in C−1, then for any integral ideal I ∈ C,
IJ = αOK , where α ∈ J (because from a previous lemma, there exists
ω ∈ OK such that gcd(IJ, ωOK) = J . We know that IJ = αOK for α ∈ K,
thus, gcd(αOK , ωOK) = J , which means, α ∈ J and ω ∈ J).

Conversely, if α ∈ J , then I = J−1αOK is an integral ideal in C.

Moreover, |NK(α)| = N(I)N(J). So, N(I) < X if and only if |NK(α)| <
XN(J) = Y (say). Consequently, N(X,C) is the number of non-zero prin-
cipal ideals in αOK , α ∈ J such that |NK(α)| < Y .

In other words, N(X,C) = {number of α ∈ J, α 6= 0, which are pairwise
non-associates and for which |NK(α)| < Y }.

Case(i) d > 0 : Let η > 1 be the fundamental unit. Clearly, for any α ∈ J ,
α 6= 0, there exists m ∈ Z such that if η1 = αηm, we have

0 ≤ log

∣∣∣∣∣ η1

|NK(η1)
1
2 |

∣∣∣∣∣ < log η. (7.4)
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Conversely, if η1, η2 are associate elements of J satisfying 8.4, then η1 = εη2,
where ε is an unit with 1 ≤ |ε| < η. So, ε = ±1. Hence,

2N(X,C) = {number of η1 ∈ J | 0 < |NK(η1)| < Y, 0 ≤ log

∣∣∣∣∣ η1

|NK(η1)
1
2 |

∣∣∣∣∣ < log η}.

(7.5)

Case(ii) d < 0 : In this case we have wN(X,C) = {number of η1 ∈ J : 0 <
|NK(η1)| < Y }.

In either case, let (β1, β2) be an integral base of J and let β′1, β′2 be the
conjugates of β1, β2 respectively. Let Ω denote the following open set in the
plane:

if d > 0,

Ω = {ξ = (ξ1, ξ2) ∈ R2 | 0 < |ξ1β1 + ξ2β2||ξ1β
′
1 + ξ2β

′
2| < 1,

0 < log
|ξ1β1 + ξ2β2|

|ξ1β1 + ξ2β2|
1
2 |ξ1β′1 + ξ2β′2|

1
2

< log η};

if d < 0,
Ω = {ξ = (ξ1, ξ2) ∈ R2 | 0 < |ξ1β1 + ξ2β2|2 < 1}.

We show Ω is bounded in both cases.

For d > 0, since |ξ1β1 +ξ2β2||ξ1β
′
1 +ξ2β

′
2| < 1 and |ξ1β1+ξ2β2|

|ξ1β′1+ξ2β′2|
< η2, we see that

both ξ1β1 + ξ2β2 and ξ1β
′
1 + ξ2β

′
2 are bounded in Ω. Thus, ξ1, ξ2 are again

bounded in Ω, since β1β
′
2 − β2β

′
1 6= 0 (in fact, β1β

′
2 − β2β

′
1 = ±N(J)

√
d by

4(I) = N(I)2d). For d < 0, |ξ1β1 + ξ2β2| = |ξ1β
′
1 + ξ2β

′
2| < 1 and again,

since β1β
′
2 − β2β

′
1 6= 0, we get that ξ1, ξ2 are bounded in Ω.

So now,

wN(X,C) =


number of lattice points in Ω√Y if d > 0

number of lattice points in Ω√Y + number AY if d < 0

of lattice points (ξ1, ξ2) with |ξ1β1 + ξ2β2|2 ≤ Y and
|ξ1β1 + ξ2β2| = |ξ1β

′
1 + ξ2β

′
2| 6= 0.

Since, AY =
∑
m<Y

am, where (am) is a sequence of real numbers and Y > 0.

Then AY = O(
√
Y ) = O(

√
X). Hence

lim
X→0

wN(X,C)

X
= N(J) lim

Y→∞

NΩ(
√
Y )

Y
= N(J)

∫∫
Ω

dξ1dξ2, (7.6)
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using Lemma 7.1. If d > 0, set u1 = ξ1β1 + ξ2β2 and u2 = ξ1β
′
1 + ξ2β

′
2. Since,

|β1β
′
2 − β2β

′
1| = N(J)

√
d, we have∫∫

Ω

dξ1dξ2 =
4

N(J)
√
d

∫∫
U∗

du1du2,

where U∗ = {(u1, u2)|0 < u1u2 < 1, 1 < u1

u2
< η2;u1, u2 > 0}.

Making change of variables, v1 = u1u2 and v2 = u1

u2
,
∫∫
Ω

dξ1dξ2 = 4 log η

N(J)
√
d
. So

that, along with (7.6), we get the theorem. If d < 0, set u1 = Re(ξ1β1 +ξ2β2)
and u2 = Im(ξ1β1 + ξ2β2) and find that∫∫

Ω

dξ1dξ2 =
2

N(J)
√
|d|

∫∫
u2

1+u2
2<1

du1du2 =
2π

N(J)
√
d
.

This completes the proof.

Let K be as above, a quadratic field with discriminant d and for X > 0,
N(X,K) the number of integral ideals I with N(I) < X. Since κ from the
above theorem is independent of the ideal class C,

lim
X→∞

N(X,K)

X
= h · κ,

where h is the class number of K.

Hence by Wiener-Ikehara theorem, we get the following result.

Proposition 7.3. lims→1+(s− 1)ζK(s) = h · κ, where h is the class number
of the quadratic field K and κ is the Dirichlet’s structure constant, defined
in the previous theorem.

Now, using the fact that (s− 1)ζ(s) → 1 as s → 1+, and from the previous
results in this chapter, we obtain Theorem 7.4, i.e.,

Let K be a quadratic field of discriminant d. Let h be the class number of
K. Then we have

h =

{ √
d

2logη
Ld(1) if d > 0

w
√
d

2π
Ld(1) if d < 0.

Consider the equation ζK(s) = ζ(s)Ld(s). Recall that ζ(s) has a simple pole
at s = 1, with residue 1. Since Ld(s) is the Dirichlet L-function of a non-
trivial character, Ld(s) has an analytic extension to the whole of complex
plane. In addition, Theorem 7.4 implies that Ld(1) > 0.
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Hence ζK(s) has a simple pole at s = 1 and has an meromorphic extension
to the whole of complex plane with only a (simple) pole at s = 1.

This is also true for any number field, as shown by Hecke. We do not prove
Hecke’s result here.



Chapter 8

Analytic class number formula

In the previous chapter, we proved the Quadratic class number formula given
by Dirichlet. In this chapter we will prove a more general result that has man
other applications.

Recall that the Dedekind zeta function of a number field K is defined by

ζK(s) :=
∑
I

1

N(I)s
=
∏
P

(
1− 1

N(P )s

)−1

,

where I ranges over non-zero ideals of OK and P ranges over nonzero prime
ideals of OK , as we showed in the previous chapter the sum and product
converge absolutely for <(s) > 1.

The following theorem is often attributed to Dirichlet, although he originally
proved it only for quadratic fields. The formula for the limit in the theorem
was proved by Dedekind, and analytic continuation was proved by Landau. In
1903, Landau proved that for every number fieldK, ζK(s) can be analytically
continued to Re(s) > 1 − 1

dimQ(K)
.This was the first proof for general K

that ζK(s) is meromorphic around s = 1. Hecke later showed that, like
the Riemann zeta function, the Dedekind’s zeta function has an analytic
continuation to all of C and satisfies a functional equation, but we won’t
take the time to prove this here.

Theorem 8.1 (Analytic class number formula). Let K be a number field
of degree n. The Dedekind zeta function ζK(z) extends to a meromorphic
function on Re(z) > 1 − 1

n
that is holomorphic except for a simple pole at

z = 1 with residue

lim
z→1+

(z − 1)ζK(z) =
2r(2π)shKRK

wK
√
|dK |

,

113



114 CHAPTER 8. ANALYTIC CLASS NUMBER FORMULA

where r and s are the number of real and complex places of K, respectively,
hK is the class number of K, RK is the regulator, wK is the number of roots
of unity in K, and dK is the discriminant of K.

In practice the class number hK is usually the most difficult quantity in the
analytic class number formula to compute. We can approximate the limit in
the LHS to any desired precision using a finite truncation of either the sum
or product defining ζK(s). Provided we can compute the other quantities to
similar precision this provides a method for computing (or at least bounding)
the class number hK .

8.1 Lipschitz parametrisability

In order to prove the analytic class number formula, we need an asymptotic
estimate for the number of nonzero ideals of OK-ideals I with absolute norm
N(I) bounded by a parameter t ∈ R>0, that we will let go to infinity, this is
necessary for us to understand the behaviour of ζK(z) =

∑
I

1
N(I)z

as z → 1+.

The idea is to count points in log(OK ∩K∗) that lie inside a suitably closed
region S of Rr+s that we will scale by t. In order to bound this count as
a function of t we need a condition on S that ensures that the count grows
smoothly with t, this requires S to have a special shape. A sufficient condition
for this is Lipschitz parametrisability.

Definition 8.1. Let X and Y be metric spaces. A function f : X → Y
is Lipschitz continuous if there exists c > 0 such that for all distinct
x1, x2 ∈ X,

d(f(x1), f(x2)) ≤ c · d(x1, x2).

Every Lipschitz continuous function is uniformly continuous, but the converse
need not hold.

Definition 8.2. A set B in a metric space X is d-Lipschitz parametris-
able if it is the union of the images of a finite number of Lipschitz continuous
functions fi : [0, 1]d → B.

Now we will prove a few results to set the ground for the proof of the analytic
class number formula.

Lemma 8.1. Let S ⊂ Rn be a set whose boundary ∂S := S̄ − S0 is (n− 1)-
Lipschitz parametrisable. Then

#(tS ∩ Zn) = µ(S)tn +O(tn−1),
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as t→∞, where µ is the standard Lebesgue measure on Rn.

Here and in what follows, for a finite set A, #A denotes the number of
elements in A.

Proof. It suffices to prove the lemma for positive integers, since #(tS ∩ Zn)
and µ(S)tn are both monotonically increasing functions of t and µ(S)(t +
1)n − µ(S)tn = O(tn−1).

We can partition Rn as the disjoint union of half-open cubes of the form

C(a1, . . . , an) = {(x1, . . . , xn) ∈ Rn|xi ∈ [ai, ai + 1)},

with a1, . . . , an ∈ Z. Let C be the set of all such half-open cubes C. For each
t > 0, define

B0(t) := #{C ∈ C|C ⊂ tS},
B1(t) := #{C ∈ C|C ∩ tS 6= φ}.

It is easy to note that for every t > 0, we have

B0(t) ≤ #(tS ∩ Zn) ≤ B1(t).

We can bound B1(t)−B0(t) by noting that each C(a1, . . . , an) counted by this
difference, contains a point (a1, . . . , an) ∈ Zn within a distance

√
n = O(1)

of a point in ∂tS = t∂S.

Let f1, . . . , fm be Lipschitz functions from [0, 1]n−1 → ∂S, whose images cover
∂S, and let c1, . . . , cm be constants such that d(fi(x1), fi(x2)) ≤ cid(x1, x2),
for all x1, x2 ∈ [0, 1]n−1.

Now, for any y ∈ ∂S, we have y = fi(x1, . . . , xn−1) for some i, and if we put
rj = [txj] ∈ Z, so that 0 ≤ xj − rj

t
≤ 1

t
, then

d(y, fi(
r1

t
, . . . ,

rn−1

t
)) ≤ ci · d((x1, . . . , xn−1), (

r1

t
, . . . ,

rn−1

t
)) < ci

√
n

t
≤ c

t
,

where c :=
√
nmaxi ci.

So, for every y ∈ ∂S, there lies a point within the distance of c
t
, from the

following set

P =
{
fi

(r1

t
, . . . ,

rn−1

t

)
: 1 ≤ i ≤ m, 0 ≤ r1, . . . , rn−1 ≤ t

}
.

This set P has cardinality m(t + 1)n−1 = O(tn−1). Hence we can say that
every point of ∂tS is within a distance of c of one of the O(tn−1) points in
tP .
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The number of integer lattice points within a distance
√
n of a point in ∂tS

is therefore O(tn−1) as well, and therefore,

B1(t)−B0(t) = O(tn−1).

Also, note that B0(t) ≤ µ(tS) ≤ B1(t) and µ(tS) = tnµ(S). Hence the
lemma follows.

We recall the definition of a covolume of a lattice.

Definition 8.3. Let Γ is a lattice in Rn. Let (v1, . . . , vn) be an ordered basis
of Γ. Let vi = (vi1, . . . , vin), for 1 ≤ i ≤ n.

The covolume of L is the absolute value of the determinant of the matrix:
v11 v12 . . . v1n

v21 v22 . . . v2n
...

... . . . ...
vn1 vn2 . . . vnn

 .

This definition is independent of the choice of the basis.

Corollary 8.1. Let Γ be a lattice in an R-vector space V ∼= Rn and let S ⊂ V
be a set whose boundary is (n− 1)-Lipschitz parametrisable. Then

#(tS ∩ Γ) =
µ(S)

covol(Γ)
tn +O(tn−1).

Proof. The case Γ ⊂ Zn is given by the lemma.

We now note that if the corollary holds for sΓ, for some s > 0, then it also
holds for Γ, since tS ∩ sΓ = ( t

s
)S ∩ Γ.

For any lattice Γ, we can choose s > 0 so that sΓ is arbitrarily close to an
integer lattice ( we can take s to be the LCM of all denominators appearing
in rational approximations of the coordinates of a basis for Γ). The corollary
then follows.

Remark 8.1. With the definition of covolume given above, we can say that,
covol(Γ) = VLeb(Φ) = µ(Φ), for any fundamental mesh Φ for Γ.

So the ratio µ(S)
covol(Γ)

= µ(S)
µ(Φ)

in the above corollary.

We now apply the above corollary to Γ = OK and want to replace covol(OK)
with

√
dK, which requires us to use the normalised Haar measure on KR

defined in Chapter 4.
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8.2 Counting algebraic integers of bounded norm

From the discussions in Chapter 5, we can write O∗K = µ(K) × U , where
U ⊂ O∗K is free of rank r + s− 1, and µ(K) is the group of roots of unity in
K. The subgroup U is not uniquely determined, but let us fix a choice.

We want to estimate the quantity

#{I : N(I) ≤ t},

where I ranges over the non-zero ideals of OK , as t→∞.

As a first step, let us restrict our attention to non-zero principal ideals 〈α〉 ⊂
OK . We then want to estimate the cardinality of {〈α〉 : N(〈α〉) ≤ t}. We
have 〈α〉 = 〈α′〉 if and only if α

α′
∈ O∗K . So, this is equivalent to

{α ∈ K∗ ∩ OK |N(α) ≤ t}
/
O∗K .

Let S ⊂ K∗R. Denote by the notation S/O∗K the set of equivalence classes
of S under the equivalence relation α ∼ β if and only if α = uβ for some
u ∈ O∗K .

If we now define,

K∗R,≤t := {x ∈ K∗R|NK(x) ≤ t} ⊂ K∗R ⊂ KR,

then we want to estimate the cardinality of the finite set(
K∗R,≤t ∩ OK

) /
O∗K ,

where the intersection takes place in KR and produces a subset of K∗R, that
we partition into equivalence classes modulo O∗K . Note that the finiteness of
the set

(
K∗R,≤t ∩ OK

) /
O∗K follows form the finiteness of the integral ideals of

bounded norm.

Simplify the matter by replacing O∗K with the free group U ⊂ OK∗, we then
have a wK − to− 1 map(

K∗R,≤t ∩ OK
) /
U →

(
K∗R,≤t ∩ OK

) /
O∗K .

It suffices to estimate the cardinality of
(
K∗R,≤t ∩ OK

) /
U and divide the

result by wK .

Recall that for x = (xi) ∈ K∗R, the norm map N : K∗R → R∗>0 is defined by
the product of the coordinates, i.e.,

N(x) :=
r∏
i=1

|xi|
r+s∏
i=r+1

|xi|2,
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and satisfies Tr(Log(x)) = log(N(x)) for all x ∈ K∗R. We now define a
surjective homomorphism ν : K∗R → K∗R,1, such that x 7→ xN(x)−1/n.

The image ofK∗R,1 under the Log map is precisely the "trace zero hyperplane"
H (as in Chapter 5) in Rr+s. Here, Log(U) = Log(O∗K) = Γ is a lattice in
H. Let us fix a fundamental mesh Φ for the lattice Γ in H. So,

S := ν−1(Log−1(Φ))

is a set of unique coset representatives for the quotient K∗R
/
U . If we now

define
S≤t := {x ∈ S|N(x) ≤ t} ⊂ KR,

we want to estimate the cardinality of the finite set

S≤t ∩ OK .

The set OK is a lattice in the R-vector space KR of dimension n. We have
tS≤1 = S≤tn , so we can estimate the cardinality of S≤t = t

1
nS≤1 (because of

Corollary 8.1 with S = S≤1 and Γ = OK by replacing t with t
1
n ). The only

thing remaining to prove is that the boundary of S≤1 is (n − 1)-Lipschitz
parametrisable.

The kernel of the Log map is {±1}r × U(1)s, where U(1) = {z ∈ C|zz̄ = 1}
is the unit circle in C.

We thus have a continuous isomorphism of locally compact groups

K∗R = (R∗)r × (C∗)s ∼−→ Rr+s × {±1}r × [0, 2π)s, (8.1)

x = (x1, . . . , xr, z1, · · · , zs)
7→ (Log(x))× (sgn(x1), · · · , sgn(xr))× (arg(z1), · · · , arg(zs))

where the map to Rr+s is the Log map, the map to {±1}r is the vector of
signs of the r real components, and the map to [0, 2π)s is the vector of angles
arg(z) such that z

|z| = ei arg z of the s complex components.

The set S≤1 consists of 2r connected components, one for each element of
{±1}. We now parametrise each of the components using n real parameters
as follows:

• r + s − 1 parameters in [0, 1) that encode a point in Φ as an R-linear
combination of Log(ε1), . . . , Log(εr+s−1), where ε1, . . . , εr+s−1 are a ba-
sis of U ;



8.2. COUNTING ALGEBRAIC INTEGERS OF BOUNDED NORM 119

• s parameters in [0, 1) that encode an element of U(1)s;

• a parameter in (0, 1] that encodes the nth-root of the norm.

These parametrisations define a continuously differentiable bijection from the
set

C = [0, 1)n−1 × (0, 1] ⊂ [0, 1]n

to each of the 2r disjoint components of S≤1. The boundary ∂C is the
boundary of the unit n-cube, which is clearly (n−1)-Lipschitz parametrisable.
Thus, each component of S≤1, and therefore S≤1 itself, is (n − 1)-Lipschitz
parametrisable.

Now applying Corollary 9.1 to the latticeOK and the set S≤1 in the n−dimensional
R-vector space KR with t replaced by t

1
n , since S≤t = t

1
nS≤1. This gives

#(S≤t ∩ OK) =
µ(S≤1

covol(OK)
(t

1
n )n +O((t

1
n )n−1) =

(
µ(S≤1√
|dK |

)
t+O(t1−

1
n ).

(8.2)

Next we need to compute µ(S≤1) and we will use the normalised Haar mea-
sure µ on KR. We will use the isomorphism in (8.1) to make a change of coor-
dinates and understand how this affects the Haar measure µ onKR ∼= Rr×Cs.

In terms of the standard Lebesgue measures dx and dA on R and C, we have
µ = (dx)r(2dA)s, where the 2dA comes from the fact that the normalised
absolute value for each complex place is the square of the Euclidean absolute
value on C.

For each factor of K∗R ∼= (R∗)r × (C)s ⊂ Rr × Cs, we define the following
maps:

R∗ → R× {±1}
x 7→ (log |x|, sgn(x))

±el ←[ (l,±1)

dx 7→ eldl µ{±1},

and

C∗ → C× [0, 2π)

z 7→ (2 log |z|, arg z)

el/2+iθ ←[ (l, θ)

2dA 7→ 2el/2d(el/2)dθ = eldl dθ,
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where dl is the Lebesgue measure on R µ{±1} is the counting measure on
{±1}, and dθ is the Lebesgue measure on [0, 2π). We thus have

K∗R
∼−→ Rr+s × {±1}r × [0, 2π)s

µ 7−→ eT (.) µRr+s µ
r
{±1} µ

s
[0,2π),

where the trace function T (.) sums the coordinates of a vector in Rr+s.

We now make one more change of coordinates:

Rr+s → Rr+s−1 × R
x = (x1, . . . , xr+s) 7→ (x1, . . . , xr+s−1, y := T (x))

eT (x)µRr+s 7→ eyµRr+s−1dy.

If we let π : Rr+s → Rr+s−1 denote the coordinate projection, then the
measure of π(Φ) is Rr+s−1 is, by definition, the regulator RK .

The Log map gives us a bijection

S≤1
∼−→ Φ + (−∞, 0]

(
1

n
, . . . ,

1

n
,

2

n
, . . . ,

2

n

)
,

x = N(x)1/nν(x) 7−→ Log(ν(x)) + logN(x)

(
1

n
, . . . ,

1

n
,

2

n
, . . . ,

2

n

)
.

The coordinate y ∈ (−∞, 0] is given by y = T (log x) = logN(x). So, we
can now view S≤1 as an infinite union of cosets of Log−1(Φ) parametrised by
ey = N(x) ∈ (0, 1].

Under our change of coordinates, we have

K∗R
∼−→ Rr+s−1 × R× {±1}r × [0, 2π)s

S≤1 → π(Φ)× (−∞, 0]× {±1}r × [0, 2π)s.

Since RK = µRr+s−1(π(Φ)), we have

µ(S≤1) =

0∫
−∞

eyRK2r(2π)sdy = 2r(2π)sRK .

Putting this into equation 8.2, we get

#(S≤1 ∩ OK) =

(
2r(2π)sRK√
|dK |

)
t+O(t1−

1
n ). (8.3)
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8.3 Proof of analytic class number formula

We now have the necessary results to prove the analytic class number formula.
The main tool is the following theorem, which uses our discussion from the
previous section to give a precise asymptotic estimate on the number of ideals
of bounded norm.

Theorem 8.2. Let K be a number field of degree n. As t→∞, the number
of non-zero integral ideals I of norm N(I) ≤ t is,(

2r(2π)shKRK

wK
√
dK

)
t+O

(
t1−

1
n

)
,

where r, s are the number of real and complex conjugates of K, respectively;
hK is the class number of K; RK is the regulator; wK is the number of roots
of unity in K; and dK is the discriminant of K.

Proof. In order to count the non-zero integral ideals I with norm N(I) ≤ t,
we group them by ideal class.

For the trivial class, we just need to count non-zero principal ideals 〈α〉,
equivalently, the number of non-zero α ∈ OK with N(α) ≤ t, modulo the
unit group O∗K . Dividing equation 8.3 by wK to account for wK− to−1 map

S≤t ∩ OK → (K∗R,≤t ∩ OK)/O∗K ,

we obtain

#{〈α〉 ⊂ OK |N(α) ≤ t} =

(
2r(2π)sRK

wK
√
|dK |

)
t+O

(
t1−

1
n

)
. (8.4)

To complete the proof, we now show that we get the same answer for every
ideal class. Fix an ideal class [I], with I a non-zero integral ideal. Multipli-
cation by I gives a bijection

{ideals J ∈ [I−1]|N(J) ≤ t}
×I−→ {non-zero principal ideals 〈α〉 ⊂ I|N(α) ≤ tN(I)}
→ {non-zero α ∈ I|N(α) ≤ tN(I)}

/
O∗K .

Let S[I],≤t denote the set on the RHS. The estimate in (8.4) derived from
Corollary 8.1 applies to any lattice in KR, not just OK . Replacing OK with
I in (8.4), we get

#S[I],≤t =

(
2r(2π)sRK

wKD(I)

)
tN(I) +O

(
t1−

1
n

)
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=

(
2r(2π)sRK

wK
√
|dK |N(I)

)
tN(I) +O

(
t1−

1
n

)
=

(
2r(2π)sRK

wK
√
|dK |

)
t+O

(
t1−

1
n

)
.

Note that the RHS does not depend upon the ideal class [I]. Summing over
ideal classes yields,

#{non-zero integral ideals J |N(J) ≤ t}

=
∑

[I]∈HK

#S[I],≤t =

(
2r(2π)shKRK

wK
√
|dK |

)
t+O

(
t1−

1
n

)
,

as claimed.

Lemma 8.2. Let a1, a2, . . . be a sequence of complex numbers and let σ be
a real number. Suppose that

a1 + · · ·+ at = O(tσ) (as t→∞).

Then the Dirichlet series
∑
ann

−s defines a holomorphic function on <(s) >
σ.

Proof. Let A(x) :=
∑

0<n≤x
an. Writing the Dirichlet sum as a Riemann-

Stieltjes integral, for <(s) > σ, we have

∞∑
n=1

an
ns

=

∞∫
1−

dA(x)

xs

=
A(x)

xs

∣∣∣∣∣
∞

1−

−
∞∫

1−

A(x)d(x−s)

= (0− 0)−
∞∫

1−

A(x)

(
−s
xs+1

)
dx

= s

∞∫
1−

A(x)

xs+1
dx.

To conclude that limx→∞
A(x)
xs

= 0, we use |A(x)| = O(xσ) and that <(s) > σ.

The integral on the RHS converges uniformly on <(s) > σ and the lemma
follows.
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Remark 8.2. The above lemma gives us an abscissa of convergence σ for
the Dirichlet series

∑
an
ns
. This analogous to the radius of convergence of a

power series.

Lemma 8.3. Let a1, a2, . . . be a sequence of complex numbers that satisfies

a1 + · · ·+ at = ρt+O(tσ) (as t→∞)

for some σ ∈ [0, 1) and ρ ∈ C∗. The Dirichlet series
∑
ann

−s converges on
<(s) > 1 and has a meromorphic continuation to <(s) > σ that is holomor-
phic except for a simple pole at s = 1 with a residue ρ.

Proof. Define bn := an − ρ. Then b1 + · · ·+ bt = O(tσ) and∑
ann

−s = ρ
∑

n−s +
∑

bnn
−s = ρζ(s) +

∑
bnn

−s.

We know that the Riemann zeta function ζ(s) is holomorphic on Re(s) > 1
and has a meromorphic continuation to Re(S) > 0 that is holomorphic except
for a simple pole at s = 1 with residue 1.

By the previous lemma,
∑
bnn

−s is holomorphic on Re(s) > σ, and since
σ < 1, it is holomorphic at s = 1. So the entire RHS has a meromorphic
continuation to Re(s) > σ that is holomorphic except for the simple pole at
s = 1 coming from ζ(s), and the residue at s = 1 is ρ · 1 + 0 = ρ.

We can now proceed to prove the analytic class number formula.

Theorem 8.3 (Analytic class number formula). Let K be a number field
of degree n. The Dedekind zeta function ζK(z) extends to a meromorphic
function on Re(z) > 1 − 1

n
that is holomorphic except for a simple pole at

z = 1 with residue

lim
z→1+

(z − 1)ζK(z) = ρK :=
2r(2π)shKRK

wK
√
|dK |

,

where r and s are the number of real and complex places of K, respectively,
hK is the class number of K, RK is the regulator, wK is the number of roots
of unity in K, and dK is the discriminant of K.

Proof. We have

ζK(z) =
∑
I

1

N(I)z
=
∑
t≥1

at
tz
,
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where I ranges over non-zero integral ideals, and at := #{I|N(I) = t} with
t ∈ Z≥1. If we now define

ρK :=
2r(2π)shKRK

wK
√
|dK |

,

then by Theorem 8.2 we have,

a1 + · · ·+ at = #{I|N(I) ≤ t} = ρKt+O
(
t1−

1
n

)
(as t→∞).

Applying the previous lemma with σ = 1− 1
n
, we see that ζK(z) =

∑
att
−z

extends to a meromorphic function on Re(z) > 1 − 1
n
that is holomorphic

except for a simple pole at z = 1, with residue ρK .

Remark 8.3. As noted before, Hecke proved that ζK(z) extends to a mero-
morphic function on C with no poles other than the simple pole at z = 1 and
it satisfies a functional equation. If we define the gamma factors

ΓR(z) := π−z/2Γ(
z

2
), and ΓC(z) := (2π)−zΓ(z),

and the completed zeta function

ξK(z) := |dK |z/2ΓR(z)r ΓC(z)s ζK(z)

where r, s are the number of real and complex places of K respectively; then
ξK(z) is holomorphic except for simple poles at z = 0, 1 and satisfies the
functional equation

ξK(z) = ξK(1− z).

In the case K = Q, we have r = 1 and s = 0, so

ξQ(z) = ΓR(z)ζ(z) = πz/2Γ(
z

2
)ζQ(z),

which is the completed zeta function for the Riemann zeta function ζ(z) =
ζQ(z).
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