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Chapter 1

Algebraic number fields

1.1 Elements integral over a ring

Before formally defining the notion of an algebraic number field or an alge-
braic integer, we will define the notion of integrality in a general context of
commutative rings with unity, hereafter rings.

Definition 1.1. Let A, B be rings such that A C B. An element b € B is
called integral over A if it satisfies an equation of the form

"+ a "+ 4a, =0,n>1,

with coefficients a; € A. The ring B is called integral over A if all elements
b € B are integral over A.

Example 1.1. Let A = Z and B = Z[i]. Then ¢ € B is integral over A as
it is a root of the polynomial 2% + 1 = 0. Also, B is integral over A. Any
a = a + ib € B satisfies the polynomial 2% — 2az + a® + b%.

Theorem 1.1. Let R be a ring, A a subring of R, and x € R. The following
statements are equivalent:

(i) There exists ag, ... ,a,_1 € A such that
T4 "+ gz ag=0 (1.1)
(i.e., © is a root of a monic polynomial with coefficients in A).

9



10 CHAPTER 1. ALGEBRAIC NUMBER FIELDS

(i1) The ring Alx] is an A-module of finite-type.

(iii) There exists a subring B if R which contains A and x and which is an
A-module of finite-type.

Proof. (i) = (ii)

Let M be the A-submodule of R generated by 1,z,...,2""1. By (i), 2" €
M. Multiplying (1.1) with 27, we obtain 2" = —q, 2"~ — ... — gga.
Induction on j implies that "% € M, for all j > 0. As Alz] is the A-module
generated by {z%, k > 0}, we see that A[z] = M.

(i) = (iii)

Take B = Alx].
(iii) = (i)
Let {y1,...,yn} be a finite set of generators for B as a module over A, i.e.,

B = Ay, + -+ + Ay,. Since z € B and since B is a subring of R, it follows
that xy; € B for all i = 1,...,n. Therefore,

n

TY; = Z @ijYj,

j=1
forany i =1,...,n; a;; € A,1 <14,j5 <n. This means that

n

Z(éij-r —a;)y; =0,i=1,...,n.

j=1

Consider this system of n homogeneous linear equations in {yi,...,yn}.
Write d for the determinant det(d;jxz — a;;). Multiplying the above equa-
tion by the adjoint of the matrix (d;;z — a;;), we see that dy; = 0 for every i.
This means that d-b = 0 for all b € B; in particular, d-1 =0, so d = 0. But
d is clearly a monic polynomial in x, since the highest order term appears
in the expansion of the product [[(x — a;;) of the entries of the principal

i=1
diagonal. Thus (iii) implies (i). O

Proposition 1.1. Let R be a ring, A a subring of R, and let (x;)1<i<n be a
finite set of elements of R. If, for all i, x; is integral over Alxy, ..., x;1],
then Alxy,...,x,] is an A-module of finite-type.
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Proof. We argue by induction on n. The case n = 1 follows from Theorem
1.1 (ii).

Now assume that B = A[xq,..., 2, 1] is an A-module of finite-type. Then
P
B =) Abj for some by,...,b, € B. Writing A[xy,...,2,_1,2,] = Blz,], the
j=1

q
case n = 1 implies that is a B-module of finite-type. Write Blx,] = >  Bcg
k=1

for some ¢4, ..., ¢, € Blz,]. Then
a a P
Alxy, ... x| = ZBck = Z (ZAbj)ck = Z Abjcy,
k=1 k=1 j=1 7.k
Thus (bjck)i1<j<p; 1<k<q is a finite set of generators for Afzy,...,z,] as a
module over A. O

1.2 Algebraic numbers and algebraic integers

Definition 1.2. A complex number « is said to be algebraic if a is a root
of a non-zero polynomial p(x) € Qlz]. A complex number « is called tran-
scendental if o is not algebraic.

In general, for L/K a field extension and « an element of L, we say « is
algebraic over K if av is a root of a non-zero polynomial p(z) € K|z]. If every
element of L is algebraic over K, then we say L is an algebraic extension, or
L is algebraic over K.

Definition 1.3. Let L be a field extension of K, o an element of L and
K|[x] the ring of polynomials in x over K. The minimal polynomial of «
is defined as the monic polynomial of least degree among all polynomials in
K[z] having a as a root. It is denoted by m,.

Example 1.2. /2 is algebraic over Q with minimal polynomial 2 — 2.
Note that the minimal polynomial of an element is irreducible.

Example 1.3. Let p be a prime. Let ¢, be a primitive p'-root of unity with
minimal polynomial =t =1+ 2+ --- + 277! over Q.
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The set {q(z) € Q[z]|¢(er) = 0} is an ideal of Q[z] . As Q] is a principal
ideal domain (PID), we have {q(z) € Q[z]|¢(a) = 0} = (my) ; where m,, is
the minimal polynomial of v . If mgy = 2" +a12" ' +--- 4+ ag ; where a; € Q
then degree of a is n, denoted by deg(a) .

Define the set Q[a] :== {f(a)|f(x) € Q[z]}.

Proposition 1.2. Let « be an algebraic number of degree n. Then the subring

Qla] of C is a field.

Proof. Let m, be the minimal polynomial of o. Consider the ring homomor-
phism
q:Qz] — C

defined by

m m
1=0 i=0

Kernel of ¢, Ker(q) = {f(z) € Q[z] | f(a) = 0} = (m,) is an ideal of Q|z].
Image of ¢, Im(q) = Q[a] is a subring of C.
By the 1% Homomorphism Theorem for Rings,

Q[z]

<ma>

1%

Qle]

Q[z]

(ma)

Now we claim that is a field. It is enough to show that (m,) is a maximal

ideal of Qlz].

Let f ¢ (my), i.e., my 1 f. The ideal generated by m, and f is a principal
ideal generated by, say g¢.

Since g|lmg, we have m, = c.g, where ¢ € Q[z]. But m, is an irreducible
polynomial, so ¢ € Q*. But this is impossible because g|f and m, t f. Thus,
g € Q* and (g) = Q[z]|. Hence (m,) is maximal. O

Definition 1.4. A subfield K of C is called an algebraic number field or
simply a number field if dimg(K) < oo, when K is taken as a vector space
over Q. If dimg(K) = n, then degree of K is n.
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Note that any finite extension is an algebraic extension, hence the name
algebraic number field.

Example 1.4. The field K = Q[v/2] is a subfield of C. K is an algebraic
number field with dimg(K) = 2.

Example 1.5. Referring to example 1.3, K = Q|(,] is a number field with
d’LTTlQ(K) =p— 1.

Remark 1.1. Any element « in a number field K is algebraic.

Remark 1.2. If « is an algebraic number of degree n, then Q[a] is a number
field of degree n.

Proof. Since « is an algebraic number of degree n, then a,a™ + a,_a" 1 +
-+« +ag =0 where a; € Q,a, # 0. Hence o™ = —i(an_loz”*1 + -+ ap).
Thus the span of {1,a,---,a" '} is Q[a].

To show: {1,a, -+ ,a" '} is linearly independent over Q.

Proof: Suppose there exist b; € Q and not all b; = 0, such that by + by +
o+ 4+ b,_1a"! = 0. Then deg(a) = n — 1, which is a contradiction to the
hypothesis. ]

Definition 1.5. A complex number « is said to be an algebraic integer if
a 18 a root of a monic polynomial in Z[x].

Example 1.6. Let K = Q[v/2]. Then /2 € K is an algebraic integer, while
% € K is an algebraic number but not an algebraic integer.

Remark 1.3. An algebraic integer is an algebraic number.
Remark 1.4. An element of Z is an algebraic integer.

Remark 1.5. If a € Q is an algebraic integer, then a € Z.
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Proof. Let o = £ € Q where ged(r, s) = 1 and « satisfies 2" +a;2™ ' 4+ - - +
ap=0;a; € Z, i.e., ;—Z + -+ +ag = 0. Multiplying the above equation by s™
we get, 1" + sa;r" "t 4 -+ s"ay = 0.

So r™ = —s(a;r™ ' + -+ + s"lag). Hence s|r™, ie., s|r. Thus s = £1 (as
ged(s,r) = 1).
Thus, o € Z. O

Remark 1.6. For any algebraic number «, there exists m # 0 € Z such that
ma is an algebraic integer.

Proof. Tf deg(a) = n, then there exist a; € Q such that a"+a;a" 1+ - +a, =
0. Choose m € Z such that ma; € Z for every i.

Multiplying the above equation by m™, we get (ma)™+ (may)(ma)* 1 +-- -+
m"a, = 0.

Thus, ma is an algebraic integer. ]

Definition 1.6. A polynomial f = a,x™ + -+ + ag € Z[x] is said to be
primitive if gcd(ag, ay,...,a,) = 1.

Hence any monic polynomial in Z[z] is primitive. We recall the famous
Gauss’s lemma.

Lemma 1.1. (Gauss) The product of two primitive polynomials in Z|x] is
primaitive.

Remark 1.7. Any polynomial f € Q[z] can be written in the form f = %g;
where g is primitive, g € Z[z| and a,b € Z with ged(a,b) = 1. In fact, we
can also ensure that the leading coefficient of ¢ is a positive integer.
Proposition 1.3. The following are equivalent:

(i) « is an algebraic integer.

(7i) my, is a monic polynomial in Z|x].

(111) Z[a] is a finitely generated Z-module.

(iv) There exists a finitely-generated Z-submodule M # 0 of C such that oM
C M.
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Proof. (i) = (ii)

Let f = 2™+ az" ' + -+ 4 a,;a; € Z such that f(a) = 0. Let m, be the
minimal polynomial of o € Q[z].

Then m,|f, ie., f = gmy where g € Q[z]. By remark 7, m, = §m,
and g = $¢; where m,,, g’ € Z[z] are primitive and a,b,c,d € Z such that
ged(a, b) = ged(c,d) = 1, also the leading coefficients of m., ¢’ are positive

integers.
So, f = g5m,g" and m/,g is also primitive (by Gauss Lemma).

Comparing the ged of coefficients on both sides of (bd)f = (ac)m. g, we
get bd = *ac (since f is primitive). Hence f = £m¢’. In fact, we have
f=m.g, as leading coefficients of all of them are positive integers.

Since f is monic, comparing the leading coefficients of f = m.¢’, we get the
leading coefficient of m, = 1. Also, m, = $m;, implies that m/ (a) = 0.
Hence m, = m/, as both are monic polynomials of same degree for which «
is a root.

(if) = (iii)

Let ¢ = 2" +a,_ 12" ' +---+ag € Z[x] be a polynomial such that ¢(a) = 0.
Then clearly Z[«] is generated by 1,q,...,a" ! over Z.

(iii) = (iv)

Clearly, if we take M = Z[a], then oZ[a] C Z[a].

(iv) = (i)

Let M = Zvy+- - -+Zv,, C C be a finitely-generated Z-module and o # 0 € C
such that aM C M. Then av; = zn: a;jv;; where a;; € Z for every 4, j. Define
A = (aij), then Av = aw, ie., o ijs:; characteristic value of A and it satisfies
the characteristic equation, which is of degree n and is monic. Since a;; € Z,

means the characteristic equation belongs to Z[z]. Hence « is an algebraic
integer of degree n. ]

1.3 Ring of integers

Let K be a number field. Let O denote the set of algebraic integers in
K. If a, 8 € Ok, then by Proposition 1.3, Z[a|, Z[3] are finitely-generated
Z-modules. Then the ring M = Z[«, f] is also a finitely generated Z-module.
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Let v = a4 or v = af3, then YM C M (by Proposition 1.3). Hence a + 3
and af are in Ok.

Definition 1.7. Let K be a number field of degree n. The set of algebraic
integers in K, denoted by O, is called the ring of integers of K.

1.3.1 Ring of integers for quadratic fields

Definition 1.8. An algebraic number field K of degree 2 is called a quadratic
field.

Let K be a quadratic field and let a« # 0 € K. Since dimg(K) = 2; {1,
a, o} are linearly dependent over Q, i.e., ag + aja + aza® = 0 for some
ap, a1, az € Q. Thus any o € K is a root of an irreducible polynomial in Q|x]
of degree at most 2.

But K should contain at least one element § whose irreducible polynomial
in Q[z] is of degree 2, since otherwise K = Q. Then {1, 5} forms a base of
K over Q, i.e., K = Q[B]. Let as* + a18 + ap = 0; where without loss of
generality, we may suppose that a; € Z and as # 0.

Multiplying by 4as we get, (2a28 + a1)? = a? — 4agas. Let v = 2a28 + a;.
We have K = Qlr].

Denoting m = a? — dagay € Z, we see that K = Q[\/m]. We could suppose,
without loss of generality, that m is square-free.

Definition 1.9. A quadratic field is called real or tmaginary depending on
K C R or not.

A quadratic field is real, if and only if K = Q[y/m] with square-free m > 1 €
Z. Also, if K is an imaginary quadratic field, then K "R = Q.

Any a € K is of the form a = p+ q(v/m); p,q € Q. Define the conjugate
o =p—q(y/m). aisaroot of (x —a)(x —ad) =2? — (a+)r + ad’ =
22 — 2px + p* — ¢®>m € Q|x].

Let Ok be the ring of integers in K. Any a € Ok is of the form p + g(y/m)
for some p, q € Q.

(i) If deg(m,) = 1, then m, = (x — a) for a € Z.
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This implies @ = p and ¢ = 0.

Thus, o + o =2p = 2a € Z and ad/ = p* — ¢*m = a® € Z.

(i) If deg(m,) = 2, then m, = 2? 4+ cx + d € Z[z] for some ¢ and d. Since
a is a root of 22 — 2px + p? — ¢*m € Qlx], implies —c = 2p = a + o and
d=p*—¢*m = acd'.

Conversely, for p, q € Q, if 2p and p* — ¢*m are in Z, then a = p+ q(y/m) €
Ok.

Thus, for « = p+ q(y/m) € K to belong to Ok, it is necessary and sufficient
that 2p and p? — ¢>m are both in Z.

We will use this to explicitly calculate O for quadratic fields K.

Theorem 1.2. Let K be a quadratic field and let O be its ring of integers.

Then
Jz+z(2™),  ifm=1 (mod 4)
T z+z(ym), ifm=23 (mod4)

Proof. For p,q € Q, let a = p+ q(y/m) be in O, then a = 2p and b =

@?=A¢?m o 7y particular, 4¢*m € Z.

p? — ¢*m € Z. Hence, 1

Since m is square-free, 4¢°m = (2¢)*m € Z. If q has a denominator, then m
will have to cancel out the square of the denominator. This will contradict
the choice of m. Hence 2¢ € Z, and we can write ¢ = % with f € Z. Now,
a*— f*m =0 (mod 4).

Case(i)

Let m = 1 (mod 4). Then a? = f? (mod 4), i.e., f and a are both even or

both odd. Since m =1 (mod 4), H;/m € Ok, as it is a root of 2% — x + 152

Now a = p+q(v/m) = ¢ + L(v/m) = 5L + L(/m + 1). Since a and f are
both even or both odd, a— f = 2k for some k € Z. Implies o = /H—f(@).
Thus, Ok = Z + Z(¥ZH).

Case(ii)

Let m = 2,3 (mod 4), then a*> = f?m (mod 4) if and only if a and f are
both even. Because, for any a € Z, a®> = 0 (mod 4) or a®* = 1 (mod 4). So
in a®> = f*m (mod 4), LHS has choices 0 or 1 and RHS has choices 0,2 and
3. So a has to be even, hence 2|f, i.e., f is even. Hence a = p + q(y/m) =

¢+ L(y/m) € Z+ Z(\/m). Thus, Ok = Z + Z(y/m). O
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Chapter 2

Conjugates, norm, trace and
discriminant

2.1 Conjugates

We begin with the following lemma.

Lemma 2.1. Any monic irreducible polynomial f € Qx| is the minimal
polynomial for any of its roots.

Proof. Let a € C be such that f(o) = 0. Then « is an algebraic number.
Let m, be the minimal polynomial of a. This implies m,|f, i.e., f = mag,
where g € Q[z].

Now m, ¢ Q and f is irreducible. Hence, f = ¢ - m,, where ¢ € Q. Also
since f, m, are both monic, implies ¢ = 1 and thus f = m,,. ]

Let aq, ay be two algebraic numbers with the same minimal polynomial f €

Q[z]. Then for any g € Q[z], g(er) = 0,if and only if g(az) = 0. So,
¢ : Qo] — Qo] defined by

m m
E a;o — E a; oy
=0 i=0

is an isomorphism of Q[ay] onto Q[as]. The mapping ¢ is identity on Q and
takes oy to as.

19
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Conversely, let ay be any algebraic number with minimal polynomial f. Let
¢ be an embedding of Q[ay] into C, such that ¢(a) = a for every a € Q.

Now let g = Y a;z' € Q[z] be such that g(a;) = 0. Hence, ¢(g(a;)) =

$(0) = 0. Now, ¢(g(as)) = ¢<§0 aiot) = i a:i6(a1)’ = g(#(n)). Thus ¢(a)

is also a zero of g.

Also, if g(¢(ay)) = 0, then since ¢ is one-one, g(¢(a1)) = ¢(g(ay)) = 0,
implies g(ay) = 0. Hence, for any g € Q[z], g(ay) = 0 if and only if
9(¢(a1)) = 0.

The set of all polynomials in Q[z] having ¢ (1) as a root is precisely the ideal
(f) of Q[z]. Thus ¢(ay) is an algebraic number with minimal polynomial f.

Definition 2.1. Two algebraic numbers oy, as as above are called conju-
gates of each other, i.e., two algebraic numbers are called conjugates of each
other if they are the roots of the same irreducible polynomial.

Example 2.1. Let o = a + ib € Z]i], b # 0. Then the conjugate of « is the
element o/ = a —ib and both have the minimal polynomial 2% — 2ax + a® 4+ b?.

Lemma 2.2. Let K be a field of characteristic zero or a finite field, let
f € Klx] be a monic irreducible polynomial of degree n. Then the n roots
X1,...,%, of f are distinct.

Proof. Let f(x) = 2" +a1xz" '+ -+ +a, € K[z]. Let x; = a be a root of f,
i.e., deg(ar) = n and f is its minimal polynomial. Further assume that « is
a repeated root of f. Then f'(z) = nz" ' +--- +a,_; € K[z] is such that

f'(a) =0.

Since f is the minimal polynomial of «, hence it divides any polynomial for
which « is a root, i.e., f|f’. But deg(f’) < deg(f). This is a contradiction,
provided f’ # 0. This is obvious when the characteristic of the field is zero,
as f is a non-constant polynomial.

Now suppose K is a finite field of characteristic p and if possible let f' =0,
i.e., all monomials in f have some multiples of p as their degree. So, f(x) =
g(aP) for some polynomial g.
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Since K is finite and of characteristic p, then ¢ : a — a” is an automorphism
of K. Let L be the splitting field of f, then ¢ is also an automorphism of L.
Hence, there exists h(x) such that ¢(h) = g.

Then for o € L with f(«) = 0 also has h(a) = 0 as ¢(h(a)) = ¢(h)p(a) =
g(a?) = f(a) = 0. Since h is of smaller degree than f, we get a contradiction
to the hypothesis that f is irreducible, or equivalently f is the minimal
polynomial of a. [

Theorem 2.1. Let K be a field of characteristic zero or a finite field, let K’
be an extension of finite degree n of K, and let C be an algebraically closed
field containing K. Then there exists exactly n distinct K-embeddings of K’
into C.

Proof. Our assertion is true for any extension field K’ of K which is of the
form K[o] with a € K. In fact, the minimal polynomial m,, of « over K is
then of degree n. It has n distinct roots a = z1, 25, ..., 2, in C.

For any i = 1,...,n, we have then a K-embedding o; : K’ — C such that
o;(a) = x;. These are all the embeddings because according to the discussion
before Definition 2.1, if 7 is an embedding different from the o;’s, then 7(«)
is also a root of the minimal polynomial m,. But m,, is of degree n and has
o = T1,Tg,...,%, as roots in C'. Thus 7(a) = z; for some i, and therefore
T =o0; forsomei=1,2,...,n.

We now prove the general case by induction on the degree of extension.

Let « € K/, K C Klo] C K’ and put dimg(K[a]) = q. We may assume that
q > 1. By the above argument, there are exactly ¢ distinct K-embeddings
o1,...,04 of Kla] into C. As KJo;(«)] = K|/, it is possible to construct an
extension K of Ko;(a)] and an embedding 7, : K’ — K], which extends
o; (result from Galois Theory).

Now, Klo;(«)] is a field of characteristic zero or a finite field. Note that
dimg(o,0)(K]) = dimgq(K')= % < n, the induction hypothesis implies

1

that there are exactly ¢ distinct Ko;(av)]-embeddings 6;; of K7 into C.

Therefore the n composed mappings 6;; o 7; provide q.g = n K-embeddings
of K" into C'. They are distinct since, for i # 7', §;; o 7; and 60;/; o 7, differ on
Kla]. While, for i =i’ but j # j', 6;; and 6;; differ on K.

Now for any K-embeddings of K’ into C', by taking its restriction to K[«a|, we
can see that all possible embeddings appear in this way. Hence this completes
the proof. ]
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Theorem 2.2. (theorem of the primitive element) Let K be a number
field of degree n. Then there exists an element 6 € K (called a primitive
element) such that K = Q[f].

Proof. Since every algebraic extension of a field of characteristic zero is sepa-
rable, the number field K is separable over Q. Since dimg(K) = n < oo, then
K over Q has finitely many intermediate fields, by considering the normal
closure of K and using the fundamental theorem of Galois theory.

Now, let {a;...,a,} be a basis of K over Q, then K = Q(ay,...,a,). So
if we can show that any field extension generated by two elements is also
generated by one element, we will be done.

Suppose «, 5 € K. As ¢ € Q varies, Q[a + ¢f] varies over finitely many
intermediate subfields of K over Q. Hence, there are ¢; # ¢ € QQ such that
Qla+ 18] = Qa+cef] = L. Thus, (¢; —¢z)8 € L. Therefore 5 € L. Hence
a € L.

Thus, Q(a, 8) = Qo+ 1.

We proceed inductively to show that K = Q(ayq,...,a,) = Q(ay + cean +
-+ cpay,) for some ¢; € Q. O

Let K be an algebraic number field of degree n and oy, ..., 0, the n distinct
embeddings of K into C. Let o;(K) = K® and for a € K, 0;(a) = Y. The
fields KM, ..., K™ called conjugate fields of K into C, and are again
number fields of degree n.

If K@ c R then we call 0; a real embedding and if K ¢ R then we call o;
a complex embedding.

Remark 2.1. Complex embeddings of a number field K occur in pairs. For
this, let K be a number field of degree n. By Corollary 2.2, there exists
0 € K such that K = Q[f]. Let o; be an embedding of K into C such that
oi(K) ¢ R. Since 0;(Q) = Q and 0;(Q[f]) ¢ R, implies 0;(0) = 8 ¢ R.
Now, 5 = 6; for some 1 < i < n, where §; = 0;(0). Since [ is a root of my,
then /3 is also a root of mgy. This implies that there exists &;, an embedding
of K into C, such that &;(#) = 3. Since 0,1 < j < n are all the distinct
isomorphisms, we get that ¢; = o; for some 1 < j < n. Hence, ¢;(K) = KW
for some 1 < j < n.

Let r; be the number of real embeddings of K and let s denote the number
of complex embeddings of K. Hence n = 1 +s = 11 + 21y for some 7y € Z>.
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2.2 Norm and trace

Let K be an algebraic number field of degree n and {wq,ws,...,w,} be a
base of K over Q. For any a € K, let T, : K — K,z —— « - x be a linear
map of vector spaces over Q.

Definition 2.2. For any o € K, define trace of o to be the trace of the
linear operator T, and denote it by Tri(a). Likewise, define norm of a to
be the determinant of the operator T, and denote it by Nk ().

n
Since a,w; € K, aw; € K. So aw; = Zaijwi, for every 1 < 57 < n and

i=1
a;; € Q. Let Ay = (a;j). Then Trg(a) = Tr(A,) and Nk (a) = det(A,).
Hence, Tri(a), Nk(a) € Q.

For a € K, (aw;)® = op(aw;) = op(@)or(w;) = ou(X ayw;) = 3 aiw®,
i=1 =1
for every j.

Let Q = (w;'k))k,j € M, (C) with (wgk), . ,wfzk)) as its k'"-row. We know
from Corollary 2.2 that there exists § € K such that K = Q[f]. So,

w%l) wél) e L oM (M2 ... (gW)n-1
o w§2) w§2) ) B 2 (#)2 ... (gt
w%”) wé") o wﬁ[‘) 1 o) (9(n))2 .. (g(n))n—l

Now, € is a Vandermonde matrix. Then det Q = [ (09 — 0®). Since

1<i<j<n

i # j, implies 0% #£ 6U). Hence det(€2) # 0 and € is invertible.
Let

a® 0 0
. 0 a? 0
Ao = (aV55) = :
0 0 --- am™

Then we have A2 = QA,. Since § is invertible in M,,(C), Ay = QA QL.
Hence, A, and A are similar matrices.

Thus, Nk () = det(A,) = det(Ag) = [] o and

i=1
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Tri(a) = Tr(Ay) = Tr(Ag) = Y- ald),

If A, corresponds to aw € K and Ag to § € K, then A, + Ag corresponds to
a+ B and A,Ag corresponds to af3.

Proposition 2.1. Let K be a number field of degree n and o : K — C
varies over different embeddings of K into C, then we have

(OTric(z) = L o(w),
(i) Nie(z) = [T o ().

The proof of this proposition is clear from the discussions of this section.

The trace and norm in a tower of fields satisfies the following:

Corollary 2.1. (Transitivity of trace and norm) In a tower of finite field
extensions Q C K C L, one has

TrigoTrryk =Trro; Nxjgo Noyx = Npjo-

Proof. Let m = dimg (L) and d = dimg(K), as in the field diagram below.

O — =N — I~

To prove the transitivity of trace, let {e;,...,e,} be a K-base of L and
{f1,..., fa} be a Q-base of K. Then a Q-base of L is

{eifi| 1<i<m; 1<j<d}

For a € L, let

m d

aej = Zcijei, cijfs = Z(bij>rsfr7

=1 r=1
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for ¢;; € K and (bij),s € Q. Thus, ale;jfs) = D> (bij)rseifr. Using the

above bases for L over K, K over Q and L over Q, we have the following
matrices

[Aalr/x = (ci3), [Aalrio = ((bij)rs), [Aalro = ([Aalx/0);

where the field extension in the subscript indicates what extension is being
used for that matrix. Also, the last matrix is a block matrix. Using these
matrices,

Trio(Try k() =T K/@(Z Cii) = Z Trrjolci)

— Z Z(b”)rr = TTL/@(Oé).

A similar calculation holds for the norm. O

Regular representation of K with respect to the base {wy, ..., w,} of K
is the map ¢ : K — M,,(Q), which takes « — A,. ¢ is a homomorphism
of rings. If a, f € K, then Trx(a+ 8) = Trx(a) + Trg(B) and Nk(aB) =
N (a)Nk(B).

Let a € K be an algebraic number and m, = 2™ + a12™ ' + - - -+ a,, € Qlx]
be the minimal polynomial of a. Now, « is of degree m, and Q[a] has
{1,a,...,a™ '} as a base over Q.

Let A, € M,,,(Q) correspond to « in the regular representation of Q[a] with
respect to the base {1,c,...,a™ '} of Qa] over Q. Let {Bi,...,5} be a
base of K considered as a vector space over Q[a].

An elaboration of the above corollary in the case of Q C Q[a] C K can be
seen as below.

dimg(K) = dimgpa)(K) - dimg(Q[a]) = 1-m = n. Then {Bio; | 1 < j <
m;1 < i < n} forms a base for K over Q. Let B, correspond to « in the
regular representation of K with respect to this Q-base. Then,

0O --- 0

0 A, - 0

Bo= : : .. : EM”(Q)
0 0o --- A,
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So, Trg(Bs) =1 - Tr(Ay) and Ng(a) = det(B,,) = det(A,)!. Also each A,
is a m X m matrix as deg(a) = m. So, the matrix A, gets repeated | many
times, where dimgq(K) = 1.

Now suppose, « is an algebraic integer,then m, = 2™ + a1 2™ ' +--- +a,, €
Z[z] is the minimal polynomial of «. Hence, the matrix of endomorphism

Ty - Qla] — Qla] is,

0 0 0 —ap

1 0 0 —Qy—1
Aa - ..

0O 0 --- 1 —Qaq

mXxXm

Hence, all the elements of A, are in Z, hence Tr(A,) and Tr(B,) = 1.Tr(A) =
[ - ay are integers. Thus for an algebraic integer o € K, Trg(«) € Z. Simi-
larly, Nk (o) = det(B,) = det(A,)! € Z.

Let # € K be a primitive element. Then in the matrix,

1 M (9(1))2 o (9(1))n_1

1 62 (9(2))2 o (9(2))n_1
a=|. . .7 ,

i 9(‘”) (9(7'1))2 . (8(71).)71—1

the first row is {1,60,...,60" '}, which is a base for K over Q. Similarly,
{1,0@ ... (6®)"1} is a base for o9(K) = K® over Q, and the i*"-row of
Q is a base for K over Q.

Example 2.2. Let K = Q[a], where a = /2. Then m, = 2> —2 € Z[z] and
{1,/2} is a base for K over Q.

Under the endomorphism 7, : Qa] — Qla], 1 = /2 and 2 +— 2.

Thus,
0 2
=(10)

Hence, Trx(a) = Tr(A,) = 0 and Ni(a) = det(A,) = —2.

Example 2.3. Let K = Q[\/i, \/5] and let v = v/2. Then, {1, V2./3, \/6}
forms a base for K over Q. Under the endomorphism 7, 1 — v/2;v/2 —
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2; V3 — /6 and V6 — 2v/3. Then,

0200
0 2 A O) |1 000
Aa_(l o)andBa_(o Aa)_ 000 2
0010

Hence, Trx(a) = Tr(B,) = 2.Tr(A,) = 0 and Nk (a) = det(B,) = det(A,)?
— (-2 =4

For any a € Q and o € K, Trig(a-a) = a-Trg(a); Trig(a) = n - a;
Ngk(a) = a™ and Ng(a-a) =a™ - Ng(a).

2.3 Integral base

Before defining an integral base of O, we need a few results from linear
algebra on bilinear forms.

Definition 2.3. Let V' be a vector space over a field K. By a K-linear
form or simply a linear form on V', we mean a linear transformation from
V to K.

Definition 2.4. Let V' be a vector space over a field K. A bilinear form
B on'V is a mapping B : 'V xV — K such that for any fized y € V,
the mappings B,, B, of V into K, defined by B,(z) = B(z,y) and By(z) =
B(y, x) respectively, are linear forms on V.

Definition 2.5. A bilinear form B(x,y) on V is non-degenerate if, for
any fived y # 0 € V, the linear form B, # 0, i.e., B,(x) = B(x,y) # 0 for
some x; and also the linear form B, # 0.

Let K be a number field of degree n and let « € K. The mapping o —
Tri(a) is a Q-linear mapping of K into Q. Define a bilinear form B(z,y) =
Tr(zy) for any =,y € K, on the Q-vector space K.

Proposition 2.2. The bilinear form B(z,y) = Trg(xy) for x,y € K is
non-degenerate.
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Proof. Let x #£ 0 € K. Then B!(y) = B(y,z) = Trx(zy) # 0 asfory = 27!,
B!(y) = Trg(xy) = Trx (1) = n. Similarly, B! (y) = B(x,y) # 0. H

Let V' be a vector space of dimension n over a field K. Then we have

Proposition 2.3. Let B(x,y) be a non-degenerate bilinear form on V. Then
for any base aq, a, ..., ap of V', there exists a base By, ..., B, of V such that
B(w, ;) = 0ij for 1 < i,j < n, where d;; denotes the Kronecker delta
function.

The proof of this proposition uses the dual space V* of the vector space V
and Noether’s homomorphism theorem to come up with a dual base.

Noether’s homomorphism theorem states that, for f : R — S, be a surjec-
tive ring homomorphism, the following diagram is commutative:

R f . S
\‘

R/Kerf

IR

where g : R — R/Kerf is the usual map.

Proposition 2.4. Let M be a finitely-generated Z-module and let o, g, . . .,
a, be a system of generators of Z-module M. Let N be a submodule of M.
Then, there exist 51, Pa, ..., Pm, (m < n) in N that generate N over Z and

have the following form,
Bi = Z kijou

i<j

The proof of this proposition is by induction on the rank n of M as a Z-
module. The implication of this proposition will prove crucial in finding an
integral base and the norm of an ideal.

Now, let K be a number field of degree n.

Corollary 2.2. For any Q-base wq,ws,...,w, of K, there exists a base
wy, Wy, ..., w, of K such that Trg(w;, w}) = ;.
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Theorem 2.3. Let K a number field of degree n and Og be the ring of
algebraic integers in K. Then there exist a Q-base (1, -+ , B, of K such that
Bi € Og and O = Zpy + ZPs+ - - - + Z.5,,.

Proof. Let wy,ws,--- ,w, be a Q-base of K. Then there exists m # 0 € Z
such that mwy, mw,, - - - , mw, € Ok.

So without loss of generality, we can assume that wy,ws, -+ ,w, € Og.
Let wy, wy, ..., wy, of K for which Tr(w;, w}) = &;; for all i, j. We know, for

n

o ’

any z € Ok, z = E 1aiwj, where a; € Q.
1=

Since zw; € Og,the Tri(zw;) € Z. Hence, Tri(zw;) = a; € Z. Thus,
Ok C Zw} + Zwhy + -+ + Zw!,. By the previous proposition, there exist
B1, B2y Bm € Ok, (m < n); such that O = Zf; + - -+ + Zfn.

Claim : m=n
Proof : The Q-linear span, Lo(B1, B2, .-, Bm) C K. Also, any a € K is of
the form a = > byw;, where b; € Q. But each w; € O and thus can be

i=1
written as a Z-linear combination of j;’s.

Hence, K C Lg(B1,P2,-..,0m). This implies, n = dimg(K) < m < n.
Hence, m = n. Also, (1, Bo, . .., 8, are Q-linearly independent and thus, the
sum O = Zp1 + - - - + ZS,, is a direct sum.

Further, any set of elements 31, 5s, . . ., B, as above, forms a Q-base of K. [

Definition 2.6. The set {01,582, , Bn}, with By, B2, , B, as above are
said to be an integral base of Ok.

Example 2.4. Referring to Theorem 1.2, let K be a quadratic field and let
Ok be its ring of integers. Then

2

Jz+z(L),  ifm=1 (mod 4)
Tz +z(ym), if m=23 (mod4)

The {1, Y™} and {1, /m} forms an integral base for K = Q[y/m] when

2
m =1 (mod 4) and m = 2,3 (mod 4), respectively.
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Definition 2.7. Any ideal I of the ring of integers O of a number field K
15 called an integral ideal.

Remark 2.2. Let [ be any non-zero integral ideal in K. Then I NZ # {0}.

Proof. If a # 0 € I and if o" + a;a" 1 + --- + a, = 0, where a; € Z and
a, # 0, because for any a € Ok, the minimal polynomial m, of a always
has a constant term. Then a, = —a(a,_; + -+ + a"') € Z. Thus, for any
a € K, there exists a # 0 € Z such that a -« € I. O]

If B1,pBs,...,0B, are as in the theorem, then Proposition 2.4 tells us that
for any integral ideal I, there exist ay, o, ..., a,, € I, (m < n); such that
I =7%aoy+ -+ Za,,. As in the Theorem 2.3, we must have m = n. The «;
are said to be an integral base of I. Further, we may choose the «; so that

o; = Zpijﬂjv where Dij € 7.

i>i

Remark 2.3. As in the Theorem 2.3, any elements a1, as, ..., a, such that
I = Zoy + -+ + Zay, form a Q-base of K. In particular, any non-zero
ideal of I contains n elements which are linearly independent over Q. Also
if a; = ) p;i;f;, then p; # 0. Let P = (p;;). This forms the change of basis

Jj=i
matrix. Any any change of basis matrix is invertible, which implies p;; # 0
and hence without loss of generality can be taken to be > 0.

Remark 2.4. If [ # {0} is an ideal of Ok, then there exists a non-zero
a € 7 such that aOg C I C Okg. Now if, Og = Zp, + --- + Z3,, then

aOk = Zapi + - - -+ ZaB, so that a%—f; is of order a™. Therefore, OTK is finite.

The a in this remark is an uniform a for the whole of Og. To find this a,

consider the g; as above. Now for each i, there exists m; # 0 € Z such that

m;B; € I. Since, O = Zf1+ -+ Zp,, then for any a € Ok, a = [[ m; #0
i=1

is such that aa € I, i.e., aOx C I C Ok.

Also, consider only ZS; and Zaf3;. Now for any k € szﬁll means there exists
0 <l < a such that k = [ + Zaf,, implies [ has a choices. Hence, a%f; =

an
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Remark 2.5. If J is a prime ideal in Ok, then J contains exactly one
prime number p > 0 of Z. For this let a = p1ps...pr in J N Z with primes
P1y--.,Pk € Z. Since J is a prime ideal, at least one p; € J. If p,q are
distinct primes in J, then by Bezout’s identity, there exists x,y € Z such
that px + qy = 1 € J, which implies J = Og. This is a contradiction to the
choice of J.

2.4 Discriminant

Before we define the discriminant of a number field, we’ll define it for the
general case of rings.

Let B be a ring and let A be a subring of B such that B is a free A-module
of finite rank n (for example, A can be a field and B a finite extension of
degree n of A). For x € B, multiplication T, by z, (i.e., y — zy) is an
endomorphism of the A-module B.

We call trace (respectively, norm) of x € B, relative to B and A, the trace
(respectively, determinant) of the endomorphism T, of multiplication by .

The trace (respectively, norm) of x is denoted by Trg/a(x). They are ele-
ments of A.

Definition 2.8. Let B be a ring and let A be a subring of B such that B
is a free A-module of finite rank n. For {x1,zs,...,x,} C B be any set of
n elements in B. We call D(x1, 2o, ..., %,) = det(Trg/a(z;x;)) € A as the
discriminant of {ry,xs,...,z,}.

Proposition 2.5. If {y1,92,...,yn} C B is another set of elements of B
such that y; = Y a;jx; with a;; € A, then
j=1

D(yh Y2, .. 7yn) = (d€t<aij>>2D(x17 X2y« an)'

Proof. Tr(ypye) = Tr(3 apw; 3 agx;) = Tr(30 3 apiae;Ty;)
i j

v ]

= > apiag; I'r(z;z;), since trace is a linear map.
0,
So, the matrix equation is

(Tr(YpYq) Jnxn = (api)nxn(Tr(xixj))nxn(aqj)Tnxn
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Applying det on the above matrix equation,
D(y1, Y- - - yn) = det(ATr(ziz;). AT) = (det A)2.D(21, 7, . . ., Tp).
m

Proposition 2.5 implies that the matrix (a;;) which expresses one base in
terms of another, has an inverse with entries in A. Therefore, both det(a;;)
and det(a;;)"" are units in A.

Definition 2.9. Let B be a ring and let A be a subring of B such that B is
a free A-module of finite rank n. Define discriminant of B over A as,

D)4 = principal ideal generated by discriminant of any base of B over A.

Proposition 2.6. Suppose that P4 contains an element which is not a
zero-divisor. Then, {x1,...,x,} C B is a base for B over A if and only if
D(x1,...,2,) generates Dpa.

Proof. (=:) By definition of Zp/4.

(1<) Let {x1,29,...,2,} C B, d = D(x1,%2,...,%,) be such that P4 =
D(xy,29,...,2,) - A=d-A. Let {e1,e,...,e,} be a base of B over A. Put

d = D(ey,es,...,e,) and z; = Y a;je; with a;; € A for every 1, j.
=1

J

Then, d = (det(a;;))* - d’ by Proposition 2.5. By hypothesis, d - A = P4 =
d - A, which implies there exists a non-zero b € A such that d' = b - d.

Thus, d(1 — b(det(a;;))* = 0. We know that d is not a zero-divisor, since
otherwise every element of d - A = 9,4 will be a zero-divisor.

Hence, 1 — b.det(a;)* = 0, which implies det(a;;)* = 3 # 0.

If det(a;;) = k, then k* = % and k%,b € A are units, implying k is also an
unit in A, i.e., det(a;;) is invertible in A. Consequently, {z1,z2,...,2,} is a
base for B over A. O

Lemma 2.3. (lemma of Dedekind) Let G be a group, C a field, and let
01,...,0, be distinct homomorphisms of G into the multiplicative group C*.
Then the o;’s are linearly independent over C, i.e., Y w;o;(g) = 0 for every
g € G implies that u; = 0 for every i.
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Proof. Suppose that the o;’s are linearly dependent. Consider a non-trivial
relation Y w;0; = 0 and u; € C, such that the number ¢ of the w;’s which
i

are non-zero, is minimum. This means that any zero linear combination of
0;’s with less than ¢ summands will have all the coefficients equal to zero.

After renumbering, we may suppose that
u101(g) + u209(g) + - - - + u404(g) = 0, for every g € G. (2.1)
We have g > 2 since the o;’s are not zero. For g, h € G, we see that

u101(hg) + u202(hg) + - - + ugoq(hg) (2.2)

= u101(h)o1(g) + u202(h)o2(g) + - - + ugog(h)og(g) = 0.

Multiplying equation (2.1) by o1(h) and subtracting from equation (2.2) it
follows that

us(01(h) = 03(h))oa(g) + - - + ug(01(h) = 04(h))oy(g) = 0.

This holds for every g € G and since ¢ has been chosen as small as possible,
we get that

ug(o1(h) — oa(h)) = 0; which implies o1(h) = o2(h); for every h € G.

But this contradicts the fact that o;’s are all distinct. O

Proposition 2.7. Let K be a number field of degree n and let o1,04...,0,
be the n distinct embeddings of K into C. Then, if {z1,...,x,} is a base for
K over Q, then

D(zy,...,3,) = det(oi(z;))* # 0.

Proof. D(xq,...,x,) = det(Tr(z;z;)) = det(; or(ziz;)) = det(% ox(xi)ok(x;))

= det(BBT) = det(B) - det(BT) = det(B)?* = det(o(x;))?, where
B = (Uk(xi))nxn-
It remains to show that det(B) # 0.

Suppose that det(B) = 0. Let Ty be the linear transformation associated to
the matrix B. Then T is not injective, i.e., the Nullity(Tp) > 0. Hence,
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there exists a non-trivial vector u = (uy, ug, ..., u,) € C" such that B-u = 0,

i.e., Y wo;(z;) =0, for every j.
i=1

By linearity, > u;0;(z) = 0 for every x € K. This contradicts the lemma of
i=1
Dedekind.
O

2.4.1 Discriminant of quadratic fields

Let K be a quadratic number field and let Ok be its ring of integers.

Definition 2.10. Let I be an integral ideal and {ay,as} be an integral base
of I. Define discriminant of I = A(I) = Aoy, as) = (a0l —ajas)?, i.e.,
the square of the det(gfi Zz )

From the first proposition of previous section, it is clear that the above
definition is independent of integral base.

If I = Ok, we write d = dx = A(Ok) and call it the discriminant of the
field K = Q[v/m]. Then,

g )m ifm=1 (mod 4)
e 4dm, ifm=2,3 (mod 4)

Proposition 2.8. For a quadratic field K with discriminant d, we have
K = Q[Vd] and further {1, d+2\/a} is an integral base of the ring Ok of
algebraic integers in K.

The proof of this proposition is immediate from the calculations of Theorem
1.2.

Corollary 2.3. The discriminant uniquely determines a quadratic field.
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2.5 Cyclotomic fields

Definition 2.11. Any number field generated over Q by roots of unity is
called a cyclotomic field.

Given a prime p € Z, let ( = (, be a primitive p — th root of unity. ¢ is a
root of the polynomial X? —1. Since ¢ # 1, it is also a root of the cyclotomic

polynomial ))((p__ll = XPl o X +1.

To show that the cyclotomic polynomial is irreducible over Q, we’ll use Eisen-
stein’s irreducibility criterion. Recall Eisenstein’s irreducibility criterion, for
a principal ideal domain A, a prime p in A and F(X) = X" + a, X" ' +
-+ a1 X + ap € A[X] such that pla;, for 0 < i < n —1 and p* Jag, then
F(X) is irreducible over the field of fractions of A.

Theorem 2.4. For any prime number p € Z, the cyclotomic polynomial
XPt 4 XP=2 ..+ o+ 1 s irreducible in Q[X].

Proof. Substitute X =Y + 1. Then,

_ XP—1 (Y+1P—1 2=/p\ . B
p 1 = = = J 1 p 1:
XP e 4 X+ — Y F(Y).

Jj=1

If F1(Y) is irreducible, then so is the cyclotomic polynomial. Observe that,
p divides each of the binomial coefficients (?) and that p? does not divide the
constant term.

Therefore, by Eisenstein’s irreducibility criterion, F;(Y) is irreducible. O]

The previous theorem implies that Q[(] is of the degree p — 1 over Q. Thus
{1,¢{,...,¢P7?} is a base for Q[¢] over Q. The aim of this section is to show
that the ring of integers of the cyclotomic field Q[(] is Z[¢]. First we need to
calculate some norms and traces.

The conjugates of ¢ are ¢/, where 1 < j < p — 1. The irreducibility of the
cyclotomic polynomial implies that Tr(¢’) = —1 for j =1,2,...,p—1. Also
note that 7r(1) = p — 1.

Thus, Tr(1 —¢) =Tr(1—=¢*) =---=Tr(l —(?7') = p. While, N(¢ —1) =
(—=1)P7!p. So, N(1—¢) = p. But, N(1 —() is a product of the conjugates of
(1 = (), hence

p=(=Q(1— ). (- (23)
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Let Ok be the ring of integers in K = Q[¢]. So, O contains ¢ and its
powers.

Claim 1: (1 —()Ox NZ = pZ.

Proof of Claim 1: From equation 2.3, p € (1 — {)Ok. Thus, pZ C (1 —
()Ox NZ.

Now suppose (1 — ()Ox NZ # pZ. Since pZ is a maximal ideal in Z,
(1-¢QOxkNZ=17,ie. (1-)isaunitin Ok.

So, the conjugates (1 — ¢7) of (1 — () are also units in Og. Thus, from (?7?),
p is also a unit in Z N Ok. This is a contradiction.

Therefore, (1 — ()Ox NZ = pZ.
Claim 2: For anyy € Ok, Tr(y(1 —()) € pZ.

Proof of Claim 2: Each conjugate y;(1—¢?) of y(1—¢) is a multiple (in Ok)
of (1 — ¢), which itself is a multiple of (1 — ().

Since trace is the sum of the conjugates, we have, Tr(y(1—()) € (1 —()Ok.
Also, the trace of an algebraic integer € Z.

Therefore, Tr(y(1 —()) € (1 — )OOk NZ = pZ.

Theorem 2.5. Let p € Z, a prime and ¢ a primitive p — th root of unity in
C. Then the ring Ok of integers of the cyclotomic field K = QI[(] is Z[(],
and {1,¢,...,CP7%} is a base for Ok as a Z-module.

Proof. Let © = ag + a1{ + -+ + ap_2(?~2, where a; € Q, be an element in
Ok. Then,

2(1=¢) =ap(1 =€)+ +apa(¢C"? = ("),

Taking traces and making use of the previous discussion in this section, we
obtain, Tr(x(1 —()) = agTr(1 — () = agp.

So, pag € pZ and thus, ay € Z. Also (7! = (=1 implies (7! € Ok. So,
([L’ — CL[))C_l =a; + QQC + -+ ap_ng_?’ € Ok.

By the same argument as before, a; € Z.

Applying the same argument successively, we conclude that each a; € Z. [
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Remark 2.6. The results of this section extend to the case of cyclotomic
fields Q[t], where ¢ is a primitive p” — th root of unity (p- prime). Such a
field is of degree p"~!(p — 1), and its ring of integers is Z[t]. The minimal
polynomial of ¢ over Q is

X —1
Xt — 1

r—1

— XP ) 4o x4

2.5.1 Discriminant of a cyclotomic field

Let p be an odd prime and let ( be a primitive p — th root of unity. Let
K = Q[¢] be the p — th cyclotomic field and denote the conjugates of ¢ by

¢=0,C,-..,C-1. So we have

Xp -1 =
F(X) = =[x - ).
=1

The discriminant can be computed (using the integral base {1,¢,...,(P"%})
as follows:

DL,G 7% = detl(on(¢")* = [J(0:(¢) = 0300 = [T = )%

as it is the determinant of a Vandermonde matrix. So we have

D¢, ¢ = (1) T](G - ¢)-

i#j
Note that
=Y J[x =),
i i)
[1« HFQ Nigsa(F'(€)).

i#j
To compute this norm, we take the derivative on both sides of (X —1)F(X) =
XP — 1. Substitute X = ¢ and take norm to get

N(C=1N(F'(C)) = N(p¢"™") = N(p)N(¢P) = p" .
The norm N (¢ — 1) is given by

N¢e-D=T[G-n=][0-¢) =»p

i [

Thus? D(17 C? st ’CP_Q) = (_1)%711)1)_2'
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Chapter 3

Fractional ideals and Dedekind’s
theorem

3.1 Norm of an ideal and fractional ideals

Let K be a number field of degree n and let Ok be its ring of integers.

Definition 3.1. For any ideal I # {0} of Ok, the number of elements in
the residue class ring O /1 is called the norm of I, denoted by N(I).

If I = {0}, then N(I) = 0. Clearly, N(Og) = 1. For a proper ideal I,
N(I)>1.

Proposition 3.1. Let I be a non-zero integral ideal and let O = 7Zp1 +

-+ Zp,. Then there exist o; = Y pi; P, where p;j € Z and p; > 0 such
i>i

that I = Zoy + - - - + Zay,. Also, N<[) = Hpn
=1

Proof. By remarks of Chapter 2, Section 3, I has an integral base {a1, as, ..., a,}

of the required form. Let n = n(xy,...,z,) = > x:0;, 0 < z; < piy, x; € Z.
i=1

Claim : The set S = {n(z1,...,2,)|0 < z; < pi} of prpaea...Pnn many
elements form a complete system of residues of Ok modulo I.

39



40CHAPTER 3. FRACTIONAL IDEALS AND DEDEKIND’S THEOREM

Proof of the claim : If { = > ¢;fi =11+ + cufn € Ok, ¢; € Z and we

=1
set O; = O N (LBiy1+ -+ ZB). Now, ay = p11i + p1afa + -+ - + pinfu-
By division algorithm, write ¢; = mypi1 + 21 such that 0 < x1 < py;. So,
(1 = (=201 —ma; € Op. We can, in the same way find my, € Z,
0< 2y < P22 with
G2 = (1 — T2 — maay € Oy
Continuing this way, we find ¢ = > (m;a; + z;56;), where m; € Z and 0 <

i=1
x; < pii- So, S generates Ok /1. This completes the proof of the claim.

Now we want to show that the n € S are all distinct modulo I. So, let

Sxifi = yibi € Og /I and 0 < x;,y; < pi;. This implies
=1

=1 i

n

Z(xz —yi)Bie 1.

=1

Now since [ = (o, ..., a,), we have

z:(xZ — )P = z": ko, where k; € Z.

i=1 =1

Also,

ay = p11fi +pi2fe + -+ piabh
gy = paafa+ -+ Pan

Op = pnnﬁn

So, ko + -+ + kpoy, = ki(pufi + - + p1nfn) + -+ En(PanBn). So,
x1 — y1 = kip11. This implies, pyi|z1 — y1. Now, 0 < x1,y1 < py1 implies
x1 — 1y < p1. Hence, x1 —y; = 0, i.e., ky = 0 (since p;; # 0). Similarly,
k; = 0 for every 1 < i <n and x; = y;. This completes the proof. O

Lemma 3.1. Let K be a number field of degree n and let o« # 0 € Og. Then
N((a)) = [Nk (a)].

Proof. It O = Z1+- - -+ 703, then by the previous proposition, there exist
a; = Y pijBj, where p;; € Z and p;; > 0 such that (o) = Zay + - - - + Zay,.

Jj=i
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Also, N({a)) = [ pis- Since (o) = Zafy + - - - + Zaf,, we can write
i=1

n
Oéﬁi = Z’/’ij()éj, 1< <n.
j=1

Let R = (1), then R is a base change matrix and hence invertible i.e. det(R)
is an invertible integer, in other words det(R) = £1. Also, P = (p;;) is an
upper triangular matrix and det(P) is product of the diagonal entries.

Now,
aj = ijkﬁk

k>j

implies,
aBi=> 1 Y pikb
Jj=1 k>j
Taking regular representation of a with respect to the base 31, ..., 5,, we
have
Ng(a) = det(RP) = det(R) x det(P) = +det(P).
But,
tdet(P) = £ [ [ pi = £N (o))

i=1

Thus, N({a)) = | Nk (a)|. O

Definition 3.2. By a fractional ideal in K we mean an Og-submodule T
of K for which there exists m # 0 € Z such that mI C Ok.

Any ideal in Ok is trivially a fractional ideal. For any ideal L in Ok and for
any b# 0 € Z, b-'L is a fractional ideal in K. Any ideal in O is called an
integral ideal in K.

Any fractional ideal I can be written as a='J, for a # 0 € Z and an integral
ideal J. If I, J are fractional ideals in K, then for a suitable ¢ € Z, ¢ # 0,
cl and c¢J are both integral ideals and the sum I + J and product I - J are
therefore fractional ideals in K.
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3.2 Dedekind domain

Definition 3.3. An integral domain A is said to be integrally closed if its
integral closure in its field of fractions Q(A) is A itself, i.e., if v € Q(A) is
an integral element over A, then x € A.

Example 3.1. Any principal ideal domain is integrally closed.

Definition 3.4. An integral domain A is called a Dedekind domain if it
is Noetherian, integrally closed, and if every mon-zero prime ideal of A is
mazximal.

We recall that a ring R is called Noetherian if it satisfies any of the following
three equivalent conditions:

(NIt CclyC---CI, ClI,y C--- is an increasing sequence of ideals
in R, then there exists my € N such that I, = I,,11 for every m > my.

(N2) Any non-empty set S of ideals of R contains a maximal element, i.e.,
an ideal I € § such that I ¢ J for any J € S.

(N3) Any ideal I in R is finitely generated.

The ring Z, and more generally any principal ideal ring is a Dedekind domain.
Claim: The ring of integers Ok of a number field K is a Dedekind domain.
(D1) Every non-zero prime ideal of Ok is maximal.

Let I be a prime ideal in Ok, then Ok/I is an integral domain. Now,
N(I) < o0, ie., ‘(’)K/[| < 00. Hence Ok/I is a field, as any finite integral
domain is a field, implying [ is a maximal ideal.

(D2) Ok is integrally closed.

We know, any number field is a subfield of C. We have also seen that a € C

is integral over O if and only if there exists a non-zero finitely-generated
Og-module M C C with oM C M.

So, M is finitely-generated over Ok and moreover, Ok is finitely-generated
over Z. Hence, M is finitely-generated over Z. Thus « is integral over Z and
hence lies in Of.

(D3) Ok is Noetherian.
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We know that, if A is a Noetherian ring and f : A — B makes B an
A-algebra so that B is a finitely-generated A-module under multiplication
a-b:= f(a)b, then B is a Noetherian ring. Hence, Ok is Noetherian.

Interest in Dedekind domains arises from the fact that the ring of integers
of a number field is a Dedekind domain, but not always a principal ideal
domain.

Example 3.2. Consider the ring of integer Ox = Z[v/—5] in K = Q[v/—5].

Observe that
(1+v-=5)(1—-+v-5)=2-3.

The norms of the four factors are, respectively, 6, 6, 4, and 9.

Note that 1+ 1/—5 can have no non-trivial divisor in O, since the norm of
such a divisor would have to be a non-trivial divisor of 6. This is impossible,
because the equations a? + 56> = 2 and a? + 56> = 3 have no solutions in Z.

If Ok were principal, the prime element 1+ +/—5, which divides the product
2 -3, would have to divide either 2 or 3. But then, taking norms, we see that
6 would divide 4 or 9, which is not the case. Moreover, this example shows

that for K = Q[v/—5], Ok is not an UF' D as well.

3.3 Unique factorisation of ideals

This brings us to the fundamental theorem of Dedekind, which says that
even though we might not have unique factorisation of elements in the ring of
integers of a number field, but we will nevertheless have unique factorisation
of ideals.

Theorem 3.1 (Dedekind). Any ideal of the ring Ok of algebraic integers
in a number field K can be written as the product of prime ideals in Ok,
determined uniquely up to order.

We need a few lemmas before we prove the theorem.

Lemma 3.2. Any proper ideal I C Ok contains a product of prime ideals in
Ok.

Proof. Let S = {I C Og|I does not contain a product of prime ideals}. Sup-
pose S # ¢, then S contains a maximal element, say Iy. Clearly, I, cannot
be prime, i.e., there exists x1,x2 € Ok such that zyz5 € Iy but z1, 29 ¢ 1.
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Let I; (i = 1,2) be the ideal generated by I and z;. Then [, € I; and
Iy € I,. By the maximality of Iy in S, I; ¢ S.

Hence, I} D PiP,... P, and I, D Q1Q2...Qs, where Py, ..., P, Q1,...,Qs
are prime ideals in Og. Since I1Iy C Iy, we have P, ... P.Q1...Qs C Iy.
This is a contradiction. Therefore, S = ¢. O

Lemma 3.3. Any non-zero prime ideal P C Ok 1is invertible, i.e., there
exists a fractional ideal P™' in K such that PP~1 = Ok.

Proof. Let P be a non-zero prime ideal in O. Let P~! be the set {z €
Kl|zP C Ok}. Tt is easy to see that P! is an Og-module with O C P~

Since there exists n # 0 € Z N P, we have nP~! ¢ PP~! C Og. Hence
P~1is a fractional ideal in K. Now, P C PP~! C Ok. Since P is maximal,
either PP~! = Ok or P = PP~ L.

If PP~ = O, then we are done. If P = PP~!, then every x € P~! satisfies
xP C P. We know P is a finitely-generated Z-module, implying z € Ok.
This implies P~! C O, ie., P~! = Og. We will show that P71 = O is
not possible.

Let x € P, then O # Ok, because x is a non-unit, i.e., tOk is a proper in-
tegral ideal and by the previous lemma, there exist prime ideals Py, Ps, ..., P,
in O such that PP ... P. C 2zO0k.

Let r be chosen such that ©Ox doesn’t contain a product of » —1 prime ideals
in Og. Such an r can be chosen because if it does not exist, then we can
keep reducing the number of prime ideals in the product and end up getting
an empty product inside Ok, i.e., Ox C xOk, which is a contradiction.

Now, P D 2O D PP, ...P.. So P divides one of the P;, say P, i.e.,
P, C P. But P = P,. Now, PbP;... P, ¢ xOg. Hence, there exists
be PPs... P and b ¢ 2Ok, implying 2710 ¢ O.

But bz~'P C BP;. .. PT(Z'_IOK)P = .I_lOKPlPQPg ...P.C .T_IOK'.Z'OK =
Ok. Thus, bx~! € P7! = Ok. This is a contradiction. Hence, P~! # Ok.
Thus, PP~! = Ok. O

Proof of Dedekind’s theorem. We will deal with the case of proper integral
ideals only, because the ideal O can be written as an empty product of
prime ideals in Og.

(i) Existence of a factorisation:
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Let S be the set of proper ideals of O, which cannot be factorised into
prime ideals. Suppose § # ¢, then by property (N2), S contains a maximal
ideal, say Iy C Ok. This implies I is not prime.

Property (N3) implies that there exists a prime ideal P C O such that
Iy C P. Also, lemma 3.3 tells us that there exists a fractional ideal P~! in
K such that PP~! = Ok.

Therefore, IpP~* ¢ PP~! = Ok. But if [yP~! = P, P,...P,, for prime
ideals P; in Ok, then Iy = PP,P,... P.. This is a contradiction. Hence,
IoP~' € S. But this contradicts the maximality of ;. Thus, S = ¢.

(ii) Uniqueness of factorisation:

Let I be a proper ideal in Ok and
[:P1P2---P7'ZQ1Q2-"QS

where P, Q); are all prime ideals in Og. Since Q1| [ P, this implies @4 |P;
i=1

for some 1 < ¢ < r. Say Q1|P. But Qq, P, are ‘both maximal. Hence,
@1 = P,. Now by lemma 3.3,

Q' = Q7' Q1Qs... Qs = Q2Q3... Qs
QflfzPflPlPQH_Pr:PQPg“.PT

Thus, Q2Q3...Qs = PyP;...P.. By repeating the arguments above, in
finitely many steps, we can thus prove that » = s, and the factorisation is
unique up to order. O

Corollary 3.1. Any fractional ideal I in K can be uniquely written in the
form

Qi@ Q,
PP.. . P,

where Q;, Pj are prime and Q; # P; for every i, j.

I

Proof. Choose ¢ # 0 € Z such that ¢I C Ok. So, there exists an integral
ideal J such that J = cI. Now, as ¢ € Z C Ok, (c) is proper ideal of Ok.

Write (¢) = PiPs... P, and J = Q1Q2...Qy. If any Q); = P;, then cancel
them by multiplying with their inverse ideal, viz., Q; . O]
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Corollary 3.2. Given any fractional ideal I # {0} in K there exists a
fractional ideal 17" such that I - I7' = Ok.

Proof. Since I is a fractional ideal in K, there exists ¢ # 0 € Z such that
cl C Og. So, J = cl is an integral ideal. Hence, J = P\ P, ... P,, where P;’s
are prime.

Now each P, has an inverse P, ' in K such that PP, " = Og. So, P, ... P71J
= Ok. Hence, c- P['Py' ... P71 = Ok. Takec- P{'Pyt .. Pt =171
Now, I~ is an Og-submodule of K.

To show I~! is a fractional ideal, we need to find m # 0 € Z such that
mlI~' C Ok. Since each P[l is a fractional ideal in K, there exist m; # 0 € Z

such that m; P, ' C Og. Then m = [[ m; € Z is as required. O
i=1

Remark 3.1. Let [ = P ... P%; J = P!* ... P’ beintegral ideals. Py, ..., P,
are prime ideals and a;,b; € Zso, where P} = Og. Then the gcd(I,J) ==
Pf ... P, where ¢; = min(ag,b;) and lem(I,J) = P ... P% where d; =

max(a;, b;) for 1 <i <r.

By definition of lem, I|lem(I,J) and J|lem(I,J). Hence, lem(I,J) C I, J.
Thus, lem(I,J) C INJ. Also, INJ = P{*... P where ¢; > d;, for every
i, implying I NJ C lem(I,J). Therefore, lem(I,J) = INJ = P™ .. P,
where d; = max(a;, b;).

Further, gcd(I, J) = smallest ideal dividing I and J = I + J.

We know, I C I +J and J C I + J, then [ + J is a divisor of both I and J.
Now let K be any divisor of I and J. Hence,I,J C K,ie, I +J C K, i.e.,
K|(I + J). Therefore, I + J is the ged of I and J.

Lemma 3.4. For any two integral ideals I and J, there exists a w € Ok
such that ged(IJ, (w)) = I.

Proof. Let I = P ... P% J=PP... P’ wherea;b; € Zsgand P,..., P,
are all prime ideals dividing I and J.

a;_1+1 i pair1+1
We can find an element m; € PPF . PUTT e P paril but m; ¢

a1+1 i—1+1 pa;+1 pai+1+1 .
PhT L P PP L P (since Py # Ok).

)
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Take w = > m;. Clearly, PH*" divides 7; for i # j, and P{ is the highest
i=1

power of P, dividing ;. Hence, P and no higher power of P; divides w,

implying that ged(I1J, (w)) C I.

Now, look at the prime ideal decomposition, (w) = P/ ... P Q7 ... Q" So

o; = a; for every i and I.J = P Patbr So. ged(1J, (w)) D I. Hence,
ged(1J, (w)) = 1. O

Remark 3.2. Given any integral ideal I, there exists ¢t # 0 € Z such that
J=1tI"'C Ok, ie., IJ =tOg. By the previous lemma, I = gcd(IJ, (w)) =
gcd(tOk, wOk) = tOk + wOk, i.e., any integral ideal can be generated over
Ok by two algebraic integers in K.

The multiplicativity of norm can now be proved for ideals as well.

Lemma 3.5. Let I, J be integral ideals. Then N(IJ) = N(I)N(J).

Proof. Let A= N(I) and po = N(J). Let &1,&,...,& and ny, 72, ..., 1, be a
complete set of representatives of O /I and Ok /J, respectively.

By the previous lemma, there exists w € Ok such that ged(1J, (w)) = 1.

Claim : A\p elements & +wp; for 1 <7 < \; 1 < j < p, form a complete set
of representatives of O /1J.

Proof of the claim : (i) Suppose & + wp; = & + wpy (mod 1.J). Thus,

(& — &) +wn;—m) =0 (mod I.J)
(& — &) +w(n; —m) € IJ C L.

We know, ged(1J,(w)) = I, implies w € Ok. Thus, w(n; —n) € I, ie.,
(& —&) €T and i =k.

Hence, w(n; —m) € IJ. So,n; —m € J and j = L.

(ii) Given any = € Og, there exists a unique & (1 < i < A) such that
re&+1in O/l

Now, I = (IJ, (w)) = IJ + (w), then x — & = wn + y with y € I.J. So,

r—§& =wn; (mod IJ) for some 7,
r=§ +wn; (mod 1J).



48CHAPTER 3. FRACTIONAL IDEALS AND DEDEKIND’S THEOREM

In view of this and Corollary 3.1 we can extend the definition of norm integral
ideals to norm fractional ideals. For a fractional ideal I, we define its norm

NQUN(Qy) ... N(Q)
N =R)NE) - NP

where [ = % is the prime factorisation of I.
3.4 Factorisation of rational primes in quadratic
fields

For the remaining part of this chapter, K will always stand for a quadratic
field Q[v/?] with discriminant d. We need to set up a few notations before
we proceed.

The mapping ¢ : K — K such that o(a) = o/, where a = = + yv/d and
o =z —y\/d for z,y € Q, may be seen as an automorphism of K.

Let a € K and o = o implies o € Q and conversely.

For any subset S of K, denote by S’ the image of S under this automorphism.
We know 02 = Id. Let I be a fractional ideal in K. So, there exists m # 0 €
Z such that mI C Ok. Then o(ml) C 0(Ok) = Ok, i.e., m-o(l) C Ok.
This shows that I’ is a fractional ideal in K.

It is easy to see that N(I) = N(I’), where [ is a fractional ideal in K.

For this, without loss of generality, we can assume [ to be an integral ideal.
Consider the ring homomorphism,

QOOK/[—>OK/I/
a+I+— o+ 1T

This map is well-defined as o« — f € I implies (o« — 5) =o' — ' € I'. Now
Ker(o) ={a+ I/ +I' =1}y ={a+I|d/ € I'} ={a+I|la € I}, as 0 is an
automorphism. Hence ¢ is injective.

Now for a+1" € Ok /I’ consider o +1 € Ok /I to see that p(a/+1) = a+1I'.
Hence ¢ is an isomorphism of rings. Therefore,

Ok /1] = |0k /T,

ie., N(I) = N(I').
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This proof also shows that for a prime ideal P of O, P’ is also a prime ideal
of OK

Let p € Z be a rational prime and consider the integral ideal pOg. Let its
prime factorisation be
pOkx = Py -+ By

where Py, ..., P, are prime ideals in Og. So,
N(pOk) = Nk(p) = p* = N(P,)--- N(P,).

This shows pOk has at most two prime factors (they may be the same
though), i.e. we have the following scenarios : pOr = P, or pOx = P2,
or pOk = PQ, with P # @ (as we shall see later in this case ) is noth-
ing but P’). Depending on the various possibilities we have the following
definition.

Definition 3.5. Let p € Z be a prime.

(i) If pOx = PQ, with P # Q, then p splits in K.

(ii) If pOx = P?, then p is ramified in K.

(i1i) If pOx = P, then p remains a prime in K.

For an odd prime p, the following proposition gives a classification according

to their type of factorisation. For this we first recall the definition of the
Legendre symbol.

Definition 3.6 (Legendre symbol). For an odd prime p,

p 0 if d =0 mod p,
<—) = +1 if d is a square modp,
b -1 iof d is not a square modp.

Proposition 3.2. If p is an odd prime, then

(i) pOx = P2, P prime, if and only if (%) =0,

(i1) pOx = PP', P # P', P prime if and only if (%) =+1,
(i1i) pOx = P, P prime if and only if (%) =-1,

where (;—f) is the Legendre symbol.
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Proof. (i) Let pOx = P?, P prime. Then there exists 7 = m + n(d“[) P
and 7 ¢ P? = pOy and m,n € Z.

Now, since % = (M)Q = (2m + nd)? + dn® + 2n(2m + nd)Vd, 7% €
pOyc implies p|(2m + nd)? + dn? and p|n(2m + nd).

If p|n, then p|(2m + nd)?, i.e., p|(2m + nd). So, p|m, as p is an odd prime.
So, p|m and p|n then p|gced(m,n). Hence, m € pOk. This is a contradiction.
Thus, p|(2m +nd) and p fn. Also since p|dn?, hence p|d. Therefore, ( ) =0.

Conversely, let (g) = 0. Consider the ideal P = pOx 4+ vdO. Then
P? = p?Of + pVdO + dOx C pOg. Now we show p € P2. We know,
p? € P? and d € P?. Thus, gcd(d, p*) € P

Now, ged(d, p*) # p?, because otherwise, d is either ¢ or 4¢, where ¢ is square-
free. Thus, ged(d, p?) = p. Therefore, p € P?, ie., P> = pOg. Further, P is
necessarily a prime ideal as at most two prime ideals of Ok can divide pOk.

(i) Let (g) = +1. Then there exists a € Z such that a*> = d (mod p),

ie., (a*> —d) = 0 (mod p). Clearly, p { a, otherwise p|d and it would give
(g) — 0. Let P be an ideal generated by P = pOx + (a + vd)Ox and

P :pOK—I— (a— \/3)01(

So PP’ = p*Ok + pla + Vd)Ok + p(a — Vd) O + (a> — d)Ox C pOg. We
first show p € PP'.

Note that 2ap € PP" and p* € PP’, hence ged(2ap,p®) = p € PP'. There-
fore, PP’ = pOy. Since pOk can have at most two prime factors, we get
P, P’ are prime ideals in Ok.

Next we show that P # P’. It is enough to show that P + P’ = O.

Note that P + P’ = (p,a + V/d,a — v/d). To prove the above-mentioned
statement, we have to show 1 as a Z-linear combination of {p, a++/d, a—+/d}.
For this, (a +Vd) + (a —Vd) = 2a € P+ P and p € P + P'. Hence,
gcd(2a,p) =1 € P+ P'. Therefore, P+ P’ = Ok and thus, P # P'.

Conversely, let pOx = PP', P # P', P prime. Then N(P) = N(P') =
Also, there exists & € P and a ¢ pOg. Then a = x + y(‘”z\/a), x,y € Z and
p divides at most one among x and y.

By Dedekind’s theorem, aOx = PQ, with ) C Ok an ideal. So, N(aOk) =
N(P)N(Q), ie., p= N(P)IN(aOk).

Now, N(aOk) = |Nk(a)| = |ad’| = |(2x + yd)* — y*d|. Hence, (2x + yd)* =
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y*d (mod p).

If ply, then p|(2z + yd), i.e., p|z. Therefore, p|gced(z,y), i.e., o € pOg. This
is a contradiction.

Therefore, y is an invertible element of Z/pZ and (29”%‘{)2 = d (mod p).

Therefore, (g) = +1.

(iii) The validity of (iii) is an immediate consequence of (i) and (ii). O

Definition 3.7 (Kronecker symbol).

p 0 if d =0 mod 4,
<§> =< +1 if d =1 mod 8,
-1 if d =5 mod 8.

Proposition 3.3. (i) 20, = P2, P prime if and only if () =0,
(ii) 20 = PP', P # P', P, P’ prime, if and only if (g) = +1,

(ii1) 20k = P, P prime, if and only if, (g) = -1,

where (g) is the Kronecker’s symbol for quadratic reciprocity.

Proof. (i) Let (£) = 0, hence d = 0 (mod 4) i.e. d = 4t with ¢t = 2,3
(mod 4). Accordingly we have either d =0 (mod 8) or d =4 (mod 8).

(a) When d = 0 (mod 8), let P = (2, ¥4). So, P? = 40k + VdOx + 0k.
So, P?C 20k.

Now to show, 2 € P2, we find integer solutions for 4a + bv/d + c% = 2.

We know, d = 4t, so 4a + 2b\/t + ¢t = 2. So, 4a + ¢t = 2 and 2b = 0. So,
b=0. Now t = 2 (mod 4), so ged(4,t) = 2. Hence we can use Bezout’s
identity to get integer solutions and hence 20, C P2.

(b) When d =4 (mod 8), then let P = (2,1 + \/73) Then P? = 40k +2(1 +

YOk 4 (14 Y20k = 40k + 2(1 + V) Ok + (1 + V1)2O. Therefore,
P2 C 20]{

Now to show, 2 € P2?, we find integer solution for 2 = 4a + 2b(1 + V/t) +
c(1 +2v/t +t). Comparing the coefficients we have to find a,b,c € Z such
that 2 =4a+2b+c+ct and 0 = 20+ 2c. So, b= —c. So, da+c(t —1) = 2.
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We know that ¢t =3 (mod 4). So (t —1) =2 (mod 4), i.e. ged(4,t—1) = 2.
We can then use Bezout’s identity to get integer solutions. Hence, 2 € P2
and therefore, 20, = P2.

Conversely let 20k = P2, P prime. We need to show that (g) =0,ie,d=0
(mod 4). If d = 0 (mod 4), then nothing to prove. So, let d = 1 (mod 4).
So,d=tand O =Z+ Z(#) =7+ Z(#) Since P # P?, there exists
T=x+ y(%a) € P such that © ¢ P2 Hence, x,y are both not even.

Without loss of generality, we can assume that x and y are either 0 or 1.
Also, for any a € Ok, 2a € 20k. So, m, 7 + 2o € P but not in P2,

If y =0, then x # 0 since otherwise 7 = 0 6 P?. Also, © # 1 as then
1¢ P. So,y=1and x can be 0 or 1. Now, 7% = (z + 1+2‘[) = a+b(+
where a,b € 27.

),

So, 2%+ 2x( 1+2‘/3) + 1+d+2‘[ =a+i+ b\/_ Upon comparing the coefficients,
we get % =x+ %, 1mp1y1ng b is odd ThlS is a contradiction.

Therefore, d = 0 (mod 4), i.e., (4) = 0.

(ii) Let (%) = +1, then d =1 (mod 8). So, d = m and O =Z + Z(HQ‘/&)-

Define P = 205 + (HX4) O, So, PP’ = 40 + 2(H) O + 2(14) O +
(54 Ok. So, PP' C 20k. Now, 2 = (1+Vd)+(1—+/d). Thus, 20k C PP
Therefore, 20 = PP'.

Now, P # P’ since if P = P, then 20, = P? and then (¢) = 0. This is a
contradiction.

Conversely let 20 = PP’', P # P', P prime. Then, N(P) = 2. Also, there

exists m = x + y(%) € Pand 7 ¢ PP’ = 20k. Thus, 2,y € Z are not
both even.

Now, 7Ok = PQ, where Q C Ok. Thus, 2 = N(P)|N(7rOk)(= |Nk(7 )|)
and |Ng(m)| = |rn’| = ](%%1)2 - %1]. Hence, (2x+yd) = % (mod 2), i
(22 + yd)? = y*d (mod 8).

Note that 2 { d, because if 2|d, then d is even and d = 0 (mod 4). So, (£) =0
and 20 = P2 and P = P’, which is a contradiction.

If y is even, then y = 2y, where y; ¢ 27Z or y = 2y,, where yy € 2Z.

Case(a) vy = 2y1, 21 41, y1 € Z. Then (2x + 2y1d)? = 4y,%d (mod 8). So,
(x + y1d)? = y12d (mod 2) and 2 Jy; and 2 Jd. Thus, 2 fy1d. So, yid is
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odd. Hence, 2 f(z + y1d)? and thus z + y;d is odd. Thus, z is even. This is
a contradiction as 7 ¢ 20k.

Case(b) If 4|y, then we claim that 4|(2z + yd). Now, 4|y implies 16|y*d. So
at least, 8](2z + yd)? and thus 16|(2z + yd)?. Thus, 4|(2z + yd). Again, 2|x.
This is a contradiction. Therefore, y has to be odd.

We can find, y, € Z such that ;52 = 1 (mod 8). Then d = (2x + yd)?y»>
(mod 8). Now 2 fd implies 2|(2x + yd)?y2?, implying (2z + yd)?y»? is odd,
and square of an integer is either 0 (mod 4) or 1 (mod 4). The case of 0
(mod 4) is not possible. So, (2x + yd)?*y,?> =1 (mod 4), i.e., d =1 (mod 8).

Thus, () = +1.

(iii) As before, the validity of (iii) is an immediate consequence of (i) and
(ii). 0
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Chapter 4

Minkowski Theory and Finiteness
of the class group

4.1 Lattices

Definition 4.1. Let V' be an n-dimensional R- vector space. A lattice in V
15 a subgroup of the form I = Zuvy+Zuvy+- - -+ Zw,,, with linearly independent
vectors vy, Vs, ..., Uy of V.. The m-tuple (vy,va, ..., vy) is called a basis, and
the set

O = {1+ + Tpup|r; € R0 < z; < 1}

is called the fundamental mesh of the lattice.

The lattice is called complete or a Z-structure of V' if m = n, which implies
that the set of all translates ® + v, where v € I'; of the fundamental mesh
covers the entire space V.

A lattice is a finitely-generated subgroup of V. But not every finitely-
generated subgroup is a lattice.

Example 4.1. T'=Z + Z[/2] C R is not a lattice.

We know /2 —1 € Z[\/§], which implies a, = (\/5 —1)" e Z[\/§], for every
n € N.

Now, limy, o0 a, = 0 € Z[\/2] is a limit point of the lattice. Hence, I' is not
discrete.

But each lattice I' = Zvy + Zvs + - -+ + Zv,, is a discrete subgroup of V,
i.e., any v € I' is an isolated point, i.e., there exists a neighbourhood which

95
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contains no other point of I'.

The above definition makes use of a choice of linearly independent vectors.
We will now give a characterisation of lattices which is independent of such
a choice.

Proposition 4.1. (Characterisation of lattices) A subgroup I' C V is a
lattice if and only if it is discrete.

Proof. If T is a lattice, then it is discrete by definition.
Conversely, let I" be a discrete subgroup of V.
Claim : T' is closed.

Proof : Let U be an open neighbourhood of 0. Then there exists U’ C U, a
neighbourhood of 0 such that the difference of every element of U’ lies in U.

Now every U contains an open neighbourhood of 0 of the form [](—¢;,€;).
i=1
Then we can choose U’ accordingly. Also, V' is a Hausdorff space. Now, if

there exists z ¢ I' but € I'. Then x is a limit point of T, i.e., there exists
y1 € I' such that y; € x + U’. Also, there exists V’, an open neighbourhood
of x € x + U’ such that y; ¢ V’'. But since = is a limit point, there exists
yo € I' such that yo € x + U'. And y; # ys.

Now 1,92 € x+U’, implies that there exists x1, x5 € U’ such that y; = x+x;
and yo = x + xo.

O?’éyl—ygzl’l—l‘QGU/—U/CU.

Since I' is a subgroup of V, this implies v = y; —y» # 0 € I' and also belongs
to U. Thus, 0 is not an isolated point, implying I" is closed. Now we need to
show that I' is a lattice.

Let V; be a linear subspace of V', which is spanned by the set I', and m
be its dimension. Then we may choose a basis uq, us, ..., u,, of Vi which is
contained in I' and form the complete lattice 'y = Zuy +Zus+ - - - +Zu,, C T
of Vp.

Claim : [I" : Tg] is finite.

Proof : Let ; € I' vary over a system of representatives of I'/T'g. Since Ty is
complete in V{, the translates &y + v of the fundamental mesh

Oy = {zu1 + - + Tuy |7 € R0 < 2y < 1},
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where v € T'y, covers the entire Vj. Therefore, v, = u; + vo;, where p; € ®g
and vy € ['y C Vj.

As the pu; = 7v; — 70; € T lie discretely in the bounded set ®(, the have to be
finite in number (since, closed and bounded discrete set is finite). In fact,
I' N @y is compact and discrete, hence finite. Put ¢ = [ : T'y], we have
qI' C Ty. Because for every v+T1'y € T'/Tg, q(v+T0) = 0+Ty. But g(y+T),
implies that ¢y € I'y. Hence, qI' C T.

This implies, I' C %Fo = Z(éul) +--- 4 Z(%um). By Fundamental theorem
of finitely-generated abelian groups, I' admits a Z-basis v, va, ..., v 7 < m,
ie., I'=2vi+ -+ Zv,.

The vectors vy, . .., v, are R-linearly independent and span the m-dimensional
vector space V. Therefore, r = m.

This shows I' is a lattice. O]

Proposition 4.2. (Criterion for complete lattices) A lattice I' € V' is com-
plete if and only if there exists a bounded subset M C V' such that the collec-
tion of all the translates M + vy, for v € I' covers the entire space V.

Proof. If I' = Zv, + Zwy + - - - + Zwv,, is complete, then take M = &y, where
Oy = {zv1 + -+ 20, [0 < z; < 1}

Conversely, Let M be a bounded subset of V' whose translates M + -, for
v € I' covers V. Let Vj be the subspace spanned by I'. We have to show that
V =1, ie., to show that V C Vj.

Let v € V. Since V.= |J (M + ). Then, v = a + 79, where a € M;~, € I.
~el

Also, for every | € N, lv = a; + 7, where q; € M;v, € I' C V.

Also, the sequence (%) is bounded, implying the sequence (%) is bounded.

Hence, () — 0 as [ — oo.

1 1
v=lim —a; + lim =v, = lim -, € V,.
=00 l l—o0 l l—o0 l

Since Vj is closed, v € V.

Thus, I' is a complete lattice. O]



58CHAPTER 4. MINKOWSKI THEORY AND FINITENESS OF THE CLASS GROUP

Let V' be an Euclidean vector space, i.e., an R-vector space of finite dimension
n, with a symmetric, positive definite bilinear form

(,):VxV-—R,
ie., (v1,v2) = (va,v1) for every vy,vo € V and (v,v) > 0 for every v # 0.
Then we have on V' a notion of volume - more precisely, a Haar measure.
The cube spanned by the orthonormal basis {ej,es,...,e,} has volume 1.
The parallelepiped spanned by n linearly independent vectors vy, vs, ..., v,,

O ={zv+ -z, |, e RO< x; <1}

has volume, Vol(®) = |det(A)|, where A = (a;) is the change of basis matrix,
v; = Y a;xe. Hence,
k

((vi, v3)) = (Zaikajl<ek,€l>) = (Zaikaﬂg) = AAT,

and Vol(®) = |det({v;, vj>)|%. Let T" be the lattice spanned by vy, vs, ..., v,.
Then @ is a fundamental mesh of I' and Vol(I") is defined to be Vol(®).

This also shows that a lattice is complete if and only if the volume of its
fundamental mesh is non-zero.

Further, this volume is independent of the choice of basis v1,...,v, of the
lattice because the change of basis matrix has determinant +1, so that the
set ® is transformed into a set of same volume.

Definition 4.2. A subset X of V is called centrally symmetric, if given
any point x € X, the point —x € X.

It is called convex if given any two points x,y € X, {ty+(1—t)z |0 <t < 1}.

Theorem 4.1. (Minkowski’s Lattice Point Theorem) Let I' be a com-
plete lattice in the Fuclidean vector space V. and X a centrally symmetric,
convex subset of V. Suppose that Vol(X) > 2"Vol(I"). Then X contains at
least v #0 € T.

Proof. Tt is enough to show that there exist two distinct lattice points vy, v, €
[' such that

(%X +m) ﬂ(%X +72) # ¢
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Choose a point in the intersection,

L + L +
—X = —X
5 1T™TN 5 2 T Y2,

where x1, x5 € X. This implies,

1

7:’71—’72255@—5371,

which is the centre of the line segment joining x5, —; and thus € X N T.

Now, if the sets %X + ;v € I' were pairwise disjoint, then the same would
be true of their intersections ® N (%X +v) with a fundamental mesh ® of I,
i.e., we would have

Vol(®) > Vol(®n (%X +7)).

But translation of ® N (3.X + 7) by v created the set (® — ) N 1X of equal
volume and ® — ~, for v € I' covers the entire space V', thus also the set %X .

This implies,
1 1 1
(D) > (P — =X) >Vol(zX) = —=Vol(X).
Vol( )_;vo(( )N 5X) = Vol(5X) = Vol (X)

This is a contradiction to the hypothesis that Vol(X) > 2"V ol(T). O

Minkowski’s lattice point theorem cannot be improved, as can be seen by
taking X = (=1,1) and I' = Z in R. If X is compact, however, then the
statement of the theorem does remain true even if Vol(X) > 2"Vol(T).

4.2 Minkowski Theory

Let K be a number field of degree n. In the present section, consider the
canonical mapping

j: K — K¢ = H defined by a — j(a) = (7(a)),

which results from the n distinct embeddings of K into C.

Let 7,..., 7, be the real embeddings; 7,11, ..., 7.5 be the distinct complex
embeddings up to complex conjugation; and let 7,4s:11,..., 740 are such
that Trai = Trdsti s for 1 S ) S S.
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The C-vector space K¢ is equipped with the Hermitian scalar product
<£a Q) = Z TrYr
T

The Galois group Galg(C) is generated by the complex conjugation F' : C —
C sending z — z and F? = Idc.

Consider the map,
F1 : K(C — K((j,

ie., Fy : C" — C", such that Fi((z;)) = (2;). Also, I induces a map from
Em(K,C) to Em(K,C), 7 — 7, where Em(K,C) denotes the group of
embeddings of K into C.

Define a new map

F. K(c — K(C
F(le--aZT7Z’r‘+17"'7Z7”+Sazr+s+17"'7z7”+25)
= (2_17 .. ‘7’Z_T7ZT+S+17 sy Rpd2s8y Rpgly - - 7ZT+S>‘

Note that the scalar product becomes (Fz, Fy) = F(z,y).

Finally, we can define the linear map
Tr:C"—C; Tr(z) = in,
i=1

where z = (z;) € C". Hence we see that the map Tr is F-equivariant, i.e.
Tr(F(z)) = Tr(Fy(z)) = F(Tr(z)). The composite K % K¢ — C, gives
the usual trace of K over Q. Also, T'r/q is F-invariant, i.e. Trgo(F (o)) =
Trio(a).

We now concentrate on the R-vector space Kg, which is the F-invariant
subspace of K¢(= C"), i.e.,

Krp={2=(2)€C"|z;=7Z for 1 <i<r;z.;=7 s for1<i<s}
Note that Kg is an R-module, and hence a R-vector space.

Now, it is easy to see that j(K) C Kg. Hence, we can define the map
j: K — Kg. So, F(j(a)) = j(a), for every a € K.

Let us now restrict the hermitian scalar product ( , ) from K¢ to Kg.

<,>ZK@XKc—>(C
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>}KRXKR—>R
Let z,y € K.

n T S S
o E Ty = E Ty + E Trgi Yryi + E Trtsti Yrtsti-
=1 =1 =1 =1

This inner product is a real inner product.

We call the Euclidean vector space Kr the Minkowski space, its scalar
product ( , ) the canonical metric, and the associated Haar measure the
canonical measure.

Also, we have the trace map Tr : Kg — R and its composite with j : K —
KR gives us the trace map Trg g, i.e. Troj="Trgq.

Proposition 4.3. There is an isomorphism f : Kg — [[R = R™**, such

that (z;) — (x;), where

2 if1<i<r
f((zi)) = (2:) = { Re(z) ifr+1<i<r+s
Im(zi_y) ifr+s+1<i<r+42s

This isomorphism transforms the canonical metric , ) into a scalar product,.
Let x,y € Kg,then
(z,y) = Zoszcfyn

where a; = 1, if 7 is real; and o, = 2, if T is complex.

Proof. Let (z;) € kerf. Then z; = z; =0for 1 <i <7, x,4; = Re(z.1;) =
for 1 <i <s, and @y y54; = Im(z4;) = 0 for 1 < i < s. Hence, (z;) = (0 )
Therefore, f is injective.

Since KR and R" 28 are finite-dimensional vector spaces, the ma is also
)
surjective.

Thus, f is an isomorphism.
If 2= (z;) = (a; +ib;) and 2/ = (2}) = (¢; + id;) are in Kg, then

r+s r+2s

ZZ’Z = Zalcﬁ— Z (a; +1b;)(c; —id;) + Z (a; +1ib;)(c; —id;)

i=r+1 t=r+s+1
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r+s r+s

— Z a;c; + Z a; + ’Lb CZ + ¢ + id; ) Z (ai + sz)(cz + idi)

i=r+1 1=r—+1

r+s

_Zacz+22 Re[(a; + ib;)(¢; — id;)]

r+1
r+s

—Zalcl—l—ZQ (a;c; + bid;)

r+1

Now, for (z;) = f((z:)) and (y;) = f((2})), then in R"*?* under the map f,

we have

Tr42s Tr+s Tr+4+2s

=Yy = Za i+ Y (aici+bidi) + > (aici + (=bi)(—dy))
T1 Tr41 Tr4s+1
r+s
—ZCI,ZCl‘FZQ azcz+bd) < >
r+1

O

The scalar product defined above transfers the canonical measure from Kp
to R™*25. It differs from the standard Lebesgue measure by

VOlcanonical(X) =2° VOlLebesgue(f(X))-

Now the next proposition will give us examples of lattices in the Minkowski
space Kg.

Proposition 4.4. If I # 0 is an ideal of Ok, then I' = j(I) is a complete
lattice in Kg. Its fundamental mesh has volume

Vol(T') = v/[dk [N (1),
where N(I) is the norm of the integral ideal I.

Proof. Let oy, g, ..., be a Z-basis of I. So, I' = Zj(ay) + - + Zj(aw,).

Choose a numbering of the embeddings 7 : K — C as 7q,...,7, and form
a matrix A = (7())nxn-

(1) = D, ..., ap) = (detA)? = (N(I))? - d.
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Also,

n

det({j(c), j(an)))nxn = (Z 7i(i)Ti(on)) = det(AAT) = detA - det A
= detA - detA = |det A|?.

So,
Vol(T) = |det({(j(ai), j(ax)))|* = |detA] = /|dk|N(1).

Using this proposition and Minkowski’s lattice point theorem, we get:

Theorem 4.2. Let I # 0 be an integral ideal of K and let c;, = ¢; > 0 for
7, € Hom(K,C) be real numbers such that c,, = c= and

[[ci>A N,

where A = (2)°\/|dk|. Then there exists a € I and a # 0 such that
|7i(a)| < ¢, for every 7, € Hom(K, C).

Proof. The set X = {(z;) € Kg| || < ¢;} is centrally symmetric and convex.
Its volume Vol(X) can be computed via

fiKa— ][R
where
Zi ifl1<i<r
f((2:)) = (z:) = { Re(z) ifr+1<i<r+s
Im(zi—s) ifr+s+1<i<r+2s.
Hence,

f(X)={(xy) € HR| |z;| < ¢;forl <i < xf—l—xirs <ciforr+1 <i <r+s}

T
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The canonical volume of X comes out to be 2° times the Lebesgue volume
of the image.

r 1=r—+2s
Volean(X) =2° Vol (f(X)) =2° [[2 ) [] (7)) =277 ][] e
=1 i=r+1 7

Now, using the previous proposition,
2\s
Volen(X) > 2757° (=) /|dk [N (1) = 2"V ol(T).
i

Thus the hypothesis of Minkowski’s lattice point theorem is satisfied. So,
there exists a point j(a) € X, a # 0 € I. In other words,

|7;(a)| < ¢;, for every 7, € Hom(K, C).

There is a multiplicative version of Minkowski theory. It is based on the
homomorphism

j: K" — K¢ = H Cc*
The multiplicative group K¢ admits the homomorphism,
N:K;—C"
given by the product of coordinates. The composite
KL rp S
is the usual norm of K over Q. Ng/g(a) = N(j(a)).

In order to produce a lattice from the multiplicative theory, we use the log-
arithm to pass from multiplicative to additive groups.

[:C"—R
z —> log|z|

T

+
The image of K} under the map [ lies in the set [H R] = {(z;) €

HR |l’1,{[‘2,...,$r GR;xT+i:xT+s+i a]- <1< S}-
ph
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It induces a surjective homomorphism
l: Kd — HR
(27) — (509\;\),

and we can obtain the commutative diagram

* 4\ * l\
K* 1 K¢ » [IR

vl

Q* —— C* L LR

The involution F' € Galg(C) acts on all groups trivially on K*, the map F

on Kcx as before, and on points = € [[R by 7;(F(z)) = 7i(z).

T

We have,

We now pass to the fixed modules under Galg(C) and obtain the following
diagram:

~

K —1 Kz —1 [TIR]"

vl

Q* —— R* L LR

The R-vector space [H R} T is explicitly given as follows.

Separate as before the embeddings 7 : K — C into real ones 7,...,7,
and pairs of complex conjugate ones 7,1, 711, .-, Tris, Trts- We obtain a

decomposition analogous to the one for [H (C] "

r+s

TR = f[]R < ] R xR,

i=r+1
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The factor [R x R]" now consists of points (z,x) and we identify with R by
the map (z,x) — 2z. In this way we obtain an isomorphism

I’ =E,

which transforms the map T'r : [H R} T R into the usual map

Tr:R™™ — R,

given by the sum of coordinates.

Identifying [T R] " with R™**, the homomorphism

[ KR
is given by

i(wz) = (log|z1|, ..., log|x,|, log|xr+1|2, . ,log|xr+s|2),

where (z;) € K C [[C*.

4.3 Class group

Let K be a number field of degree n. The non-zero fractional ideals in K
form a multiplicative group which we denote by A. The ring O of algebraic
integers is the identity element of A.

A fractional ideal in K is said to be principal if it is of the form aOg with
«a € K. The principal fractional ideals I # 0 forms a subgroup II of A. The
quotient group Hx = A/II is called the group of ideal classes in K or the
class group of K.

The order of H g, denoted by h is called the class number of K. If hg =1,
then Ok is a principal ideal domain.

Two fractional ideals I, J # 0 in K are therefore in the same ideal class if
and only if I = (a)J for some av € K. In that case they are said to be
equivalent.
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4.3.1 Finiteness of class group

The aim of this subsection is to prove that the class number of a number
field K is finite. But we need a lemma first.

Lemma 4.1. In every integral ideal I # 0, there exists a € I, a # 0 such

that )
|Nisgla)] < (;)S |drc|N(I).

Proof. Given € > 0, we choose positive real numbers ¢; for 7, € Hom (K, C)
such that for the complex conjugate homomorphisms 7; and 7;, ¢; = ¢4y, for
r+1<i¢<r+sand

[[c,- = (%)S\/|dK|N(I) + €.

Then by Theorem 4.2, there exists a # 0 € I, satisfying |7;(a)| < ¢;.
Thus, |Nk/g(a)| = (2)°\/|dx|N(I) + €. This is true for all € > 0.

Hence,

Ni(@] < (2)"VIdIN (D)

]

As a first application of Minkowski theory, we are going to show that the
ideal class group Hg of an algebraic number field is finite.

Theorem 4.3. The ideal class group Hx = A/IL is finite.

Proof. If P # 0 is a prime ideal of O and PNZ = pZ. Then Ok /P is a
finite field extension of Z/pZ of degree say f > 1, we have N(P) = p/.

Given a p, there exist only finitely many prime ideals P such that PNZ = pZ
(because this means P|(p) and by Dedekind’s theorem, it has only finitely
many prime ideals in its decomposition and each of them is maximal).

Hence there are only finitely many prime ideals with bounded norm. Since
every integral ideal admits a representation I = Py ... P’ where v; > 0 and
N(I) = N(P)"...N(P,)", and altogether only a finite number of ideals [
of Ok with N(I) < M, for a given M.
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It therefore suffices to show that each ideal class [I]| of H contains an integral

ideal I; such that )
N(h) <M = (=) V]dx]

For this, choose an arbitrary representation I of the class, and a v € Ok,
v # 0 such that J =~I~! C O.

By the previous lemma, there exists o € J, a # 0 such that
|Nijo(a)] < M- N(J).
This implies
[Nijg(@)] N(J)™ = N({)) - N(J7') = N({e) - ') = N(aJ ') < M.
The ideal I} = aJ ' = ay™'T € [I]. O

4.4 Minkowski bound

Consider the set X; = {(z;) € Kg|>_|x;] < t}. This set is convex and
centrally symmetric. We know the map f : Kg — [[R = R"**. Now

consider a map
g: R 5 R" x C*

such that,
(371, Loy ee oy Try Y1y oo s Ysy Ys1y - -+ 7y28> = (371, <oy Iy, y1+iy8+17 s 7y5+iy28)'
This map ¢ is an isometric isomorphism.

Now look at the image of X; under function composition g o f, call it B;.
Then

T S
B, = {(yl,...,yr,zl,...,zs)ER’"><(Cs Dl +2> |4 gt}
i=1 j=1

for t > 0. Since g is an isometric isomorphism, we can see that
Vol(B;) = Vol(go f(X;)) = Vol(f(Xy)).

Hence, to show that the canonical volume of the set X;, we will use n-
dimensional integration on the set B;. We will show that the Volp.(B;) =
27"(§)$ﬁ Then Voloa,(X:) = 2°Volper(By), i.e the canonical volume of the

n!’

. T -S4
set X, is 510,
n:
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Proposition 4.5. The Volpe(B;) = V(r,s,t) =27 (%) &

n!’
Proof. The proof is by double induction on r and s.

If r=1and s = 0. Hence n = 1. We are calculating the length of [—t,1],
which is 2t as predicted.

If r=0and s =1, then n = 2. We are calculating the area of
{z1 € C | 2|n| < t},

which is a disc of radius ¢/2 and hence the resulting volume is ”th.

Now assume that the formula holds for r, s and all £. Then V(r + 1,s,t) is
the volume of the set described by

yl+> il +2) <t
i=1 j=1
le.,
Syl +2> <t —1yl.
i=1 j=1

Now if |y| > t, then B; is empty.

For smaller values of |y|, suppose we change |y| to |y| + dy. This creates a
box in (n+ 1)-space with dy as one of its dimensions. The volume of the box
is V(r, 5.t — [y])dy.

t t

Thus, V(r+1,s,t) = [V(r,s,t — |y|)dy =2 [ 2 (%)s ((t—y)"> dy
“t

n!
0

t

2t s m\s "
n! (2) /( y)dy 2/ (n+1)!
0

as desired. Now V' (r, s 4+ 1,¢) is the volume of the set described by

D lwil 2> Izl + 202 <t
i=1 =1

As above,
Vs L= [ Vst =2l:pdu(a)

|z|<t/2
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where p is the Lebesgue measure on C. In polar coordinates, the integral
becomes

27 t/2 ( ) o t/2
m\s (t — 20)" m™\* 1
[ [2(3) aap= [ (T) L / — o) dl.
/ / 5 . l-dl-de / 5 n!dﬁ (t—20)" dl
0=01=0 =0 1=0
d(t—20)n+1 v
Write (t — 2l)nl dl = —lw and consider l!o md(t — 2l)n+1'
Now integrating by parts, we get
t/2 T t/2 41 42
— t—20)" t—20)" "
/—d(t—?l)n+1 — (—l) ( ) +/ ( ) = 0+ ‘
2(n+1) (—=2)(n+1) 2(n+1) 4in+1)(n+2)
1=0
Thus, V(r,s +1,t) = 2" (%)SH (f::;)! . This completes the induction. O]

Theorem 4.4 (Minkowski bound). If I # 0 is an integral ideal of Ok, then
there exists a # 0 € I such that

[Nijgla)] < M- N(I),
where M = 2.(4)s\/|dk| is called the Minkowski bound.

Proof. The set B, is convex, symmetric about the origin and compact. Also

T\ t"

Volre(B;) = 2 (-)

> (4.1)

n!
We choose a t > 0 such that
Volpey(By) = 27 Volgan(By) = 27 Voloan(f(Xy)) = 2" *Vol(j(1))
— 27— /JdxIN(1) (4.2)
Now, equating equations (4.1) and (4.2),
t" =2""r"*(n!)\/|dr|N(I)

By Minkowski’s lattice point theorem, there exists a non-zero element a € I
such that j(a) € B;. Also,

n

[Nio(a)l =[] Im(@)l-

=1
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Let 7;(a) = a;. Now using the AM-GM inequality (aias - - - a,)/" < grragto oy
for positive real numbers we get,

n 1 r 2 r4s n
[Nijola)| = Hai < <EZ |ai| + o Z |(1i|> .
i=1 i=1 i=r+1
Since j(a) € By, we have |Ng/g(a)| < 12_: By choice of t,
Nesa(@)] < ~2x= () IV (D) = (2) 2 ideIN (D)
a - n: = — N .
K/Q = nn ™ K T n K

]

Corollary 4.1. In every ideal class of a number field K of degree n, there
exists an integral ideal I such that

N(I) < (é)sn_! |dK|.

T n"

Proof. Choose J' as a fractional ideal in the given ideal class. Then, without
loss of generality, J = (J')~! is an integral ideal.

Choose a non-zero o € J such that « satisfies the norm inequality. Let
I = aJ', is our candidate.

I is an integral ideal because « € J and JJ = Ok. So IJ = (). So,

NING) = Nigele)] < (2] (5) VaNO),

ie.,

]

Corollary 4.2. Let K be a number field of degree n and let di be its dis-

criminant. Then
= () (3) > L ()
K=\ 4 en \ 4

Proof. 1f I is an integral ideal and a € I, non-zero, then

N((a)) = N(I),
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this implies,

A\ nl
M = (-) " x| > 1,
nn

™

2
nn T 2s
|| = (m) (Z) -

The second inequality in he statement is obtained by Stirling’s approxima-

tion, viz., n! ~ v/2mn(%)".

Hence,
= () (3) > L (22
K=\ nl 4 en \ 4 ’

1.e.

Note that ”TGQ ~ 5.8 > 1. Now, using ratio test for (a,) = = (%=)",

T e2n\ 4
2 2 2
. An+1 . n me wes . 1 Te
lim =1 —| = — lim =—>1

Therefore, (a,) — oo as n — oo. By comparison test, |dx| — oo as n — oc.
This shows that the absolute value of the discriminant |dy| tends to oo with
the degree n of the number field.



Chapter 5

Dirichlet’s unit theorem

5.1 Group of units
Let K be a number field of degree n and let Ok be its ring of integers.

Definition 5.1. A non-zero element o € Ok s called a unit of Ok if
ale OK.

So, the units of K form a subgroup U of K*.

If « € Ok is an unit, then there exists § € Ok such that af = 1. So,
Nk (aB) = Ng(a)Nk(B8) = 1. Hence, Nx(a) = +1 (since, Nk (a), Nx(B) €
7).

Conversely, if @ € Ok and Ng(a) = £1, then « is a unit. Since oV -
a®...a = £1, where o) = g;(a) and for 1 <14 < n, o;’s are the distinct
embeddings of K into C.

Example 5.1. Let K = Q[V/3], then Ox = Z[*5]. Then {1,458} is an
Ly V5
2T -

1’—)(%—#\/75) and\/SH(ég).

integral base. Let o =

Hence, A, =

N[ DO | =
NN

). Then det(A,) = Ng(a) = 1 — 2 = —1. Hence o is

an unit m K.

Lemma 5.1. Let ¢ > 0 be a real number. The number of algebraic integers
o € Ok such that |a®| < ¢ and for all 1 < i < n, is finite.

73
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Proof. Let wy,w,,...,w, be an integral base of Ok, then any @ € Ok can
be written as a = xywy + - - - + T, w,, x; € Z.

Also, o = z;w® + -« + 2,w". So, A = QX, where

nx1 nx1

Since  has an inverse Q7! in M,,(C). Thus, X = Q7 'A. By assumption,
o] < ¢. Hence, |z;] < Mc, where M depends only on 27!, thus only on
K. Since the number of integers satisfying |x;| < Mec is finite, the lemma
follows. O

Definition 5.2. A complex number « is called a root of unity if ™ =1
for some m # 0 € Z.

If p is a root of unity in K then p™ = 1 for some m # 0 € Z. So, |p¥| = 1,
for1 <i<n.

Also, every root of unity in K is a unit, but not conversely.

Example 5.2. Let K = Q[v/2], 1 + /2 is a unit, but not a root of unity.

Corollary 5.1. In the previous lemma, let ¢ = 1. Then the number of roots
of unity in K is finite.

Lemma 5.2. The roots of unity in K form a finite cyclic subgroup.

27ip
Proof. Let Zk be the group of roots of unity in K, let (; = eTt, for t =
1,2,...,w be the elements of Z.

Let g0 = q1q2 - . . g, and let A be the subgroup of Z consisting of integers p
27
for which e ® € Zk. Then, A = pyZ for some py > 0 € Z, and

2mipg
(e 0 ) C Zg.
2mipy 2mikpg
Now, any element in Zx is (; = e @« = e %« | for some k € Z. Hence,

2mipg

G € <e2%>. Thus, Zx C (e % ). O
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5.2 Dirichlet’s unit theorem

Let Oj; denote the group of units in Ok and p(K') denote the group of roots
of unity in K. It is clear that u(K) C O.

The size of the group O} is determined by the number r of real embeddings
of K and the number s of pairs of complex conjugate embeddings. In order
to describe the group, we use the diagram which was set up in Chapter 4,
during the discussion on multiplicative Minkowski theory:

~

K — Ky — [TIR]"

Ni /@l JN ;Tl

Q* Ly R* fog! | s R

In the above commutative diagram we consider the subgroups:
Ok = {€ € Ok|Nk/q(e) = 1},

the group of units,
S ={y € Kg|N(y) = +1},

the "norm-one surface", and

H={re [HR}WTT(@ — 0},

T

the "trace-zero hyperplane".

We obtain the homomorphisms
0; L sbLH

and the composite A\ == [ o j : O} — H. The image will be denoted by
'=X0Oj5) CH.

Proposition 5.1. The sequence
1—>M(K)—>(’)}<i>l‘—>0

15 exact.
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Proof. We have to show the p(K) is the kernel of .

For ( € u(K) and 7 : K — C any embedding we find log|7({)| = logl = 0.
So, u(K) C ker(\).

Conversely, let € € Q% be an element in the kernel. So, A(e) = I(j(e)) =
This means that |7(¢)| = 1 for each embedding 7 : K — C. Hence, j(¢)
(7(€)) lies in the bounded domain of the R-vector space K.

0.

While, j(e) is a point of the lattice j(Ok) of Kg. Therefore, the kernel of A
can contain only finite number of elements, and thus, being a finite group,
contains only the roots of unity in K*. O]

We now state the main theorem of this section. Once we have proven this
theorem, Dirichlet’s unit theorem can be easily deduced.

Theorem 5.1. The set I' = A(O}), as defined above, is a complete lattice
i H.

As of now, all we know is the I' C H. Recall from earlier that a complete
lattice is a free Z-module. So here, since H is a (r 4+ s — 1)-dimensional space,
then our ultimate goal is to prove that I' is a free Z-module with r + s — 1
generators. To prove this theorem, we will need several lemmas.

Lemma 5.3. Let a be a non-zero rational integer. Up to multiplication by
units, there are only finitely many elements o € Ok such that Nk ,g(a) = a.

Proof. Let ai,ay € Ok such that Ng/g(an) = Nijg(ae) = a and a; =
as + ay, where v € Og. Then Z—; =1+ o%’y € Og.
But the same is true for g—f so, 2 must be a unit. So we have proven that

if a1, @ have norm a and if oy = ay (mod aQOg), then Z—; is a unit.

Since there are only finitely many elements in the factor ring Ok /aOk, there-
fore, up to multiplication by units, there are at most |Ok /aOk| elements of
norm —=+a. O

Recall that I" is a lattice in R™ if and only if it is a discrete subgroup of R™.
Since, I' € H C R""* = [[[R]" C [[R, to show that T is a discrete subset,

it is enough to prove the following:

Lemma 5.4. For any ¢ > 0, the set {(z;) € [[R| |zi| < ¢} contains only

finitely many elements of T'.
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Proof. If a € O%, then [(j(«)) is in the set if and only if e=¢ < |7(a)| < e¢ for
every 7 € Hom(K,C). This puts a bound on the coefficients of the minimal
polynomial of «a, (since the coefficients are just sums and products of the
conjugates 7(a) of a.

Hence there are only finitely many such polynomials, which means there
can only be finitely many such «. Hence this set has only finitely many
elements. [

We deduce from this lemma that I' is a discrete subgroup and thus I' is a
lattice. It remains to be shown that I' is a complete lattice of H.

Recall that if I' C R™ is a lattice, and M C R™ is a bounded set such that
M +T =R™, then I' is a complete lattice.

Proof of Theorem 5.1. We would like to construct such a set M for I'. First,
let S = {y € K| |IN(y)| = 1}. Recall the map j : K* — K} C Kg.
We will construct a subspace T of S such that T is bounded in Kr and
S = |J T-jle). Then M = I(T) will be a set that satisfies the above

660;(
mentioned condition for I'.

It is easy to see that I(S) = H. Then we have

H=1(5)=J UDI(j(e) = | JUT)y =M ~,

€Oy ~yel ~yel

and setting M = [(T) hence we get H = M +T'. Also since T C S, T is
bounded and hence M is bounded. Therefore, once we have constructed such
a set T', then we can define M as above. So we now construct 7.

Recall from Minkowski theory, Theorem 4.2 which states, Let I # 0 be an
integral ideal of K and let ¢,, = ¢; > 0 for 7; € Hom(K, C) be real numbers
such that ¢, = cz and

[[e>4 N0,

T

where A = (%)S\/ |dic|. Then there exists a € I and a # 0 such that
|7i(a)| < ¢, for every 7, € Hom(K, C).
. We apply this to case I = Og. Let ¢; be as above, and let C' == [[ ¢ >

(%)S\/|d;{|. Now define a set
X = {(z) € Kg||z| < c}.
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Then by Theorem 4.2, there exists a non-zero o € Ok such that j(«a) € X.
(Recall from earlier, in Minkowski theory, that j is a map whose image in
Ky is defined by an ordered n-tuple, each coordinate of which is the image
of the original point under some embedding of the number field K.)

Now let us take y = (y;) € S. Then we define Xy to be a similar set:
Xy ={(z) € Kg| |zi| < ¢ -|y:| for all 7, € Hom(K,C)}.

Notice that since y € S, then the product of over all 7 € Hom(K,C) of
¢ - lys| = C. Again by Theorem 4.2, there exists a non-zero a € Ok such
that j(a) € Xy, so j(a) = zy for some x € X. So upon rearranging terms,

y~ = (i)

We now know that any element of S can be written as zj(a)™!, ie., the
product of an element from a bounded set and some element of K. In order
to prove S = |J T - e, we need to show that we can replace (j(«))™! by

ecO%,
an element of norm 1.

By a previous lemma, if we know that there are aq,--- , o, € O such that
for every a € Ok having |Nk,g(a)| < C, then we have a representation
ea = q; for some unit € in K. Applying this, we have:

y ' =2(j() " = 2(ila) = zjea; ) = zji(e)j(a; ),

and since y~' € S, j(e) € S, then z(j(a))™t € S. Tt follows then that

s= U (Usn i)

€Oy =1

n

Now let T := |J (SN Xj(a; ). T is bounded in Kg, since S is bounded and

=1

the boundedness of Xj(a; ') follows from the boundedness of X.

Therefore, I' is a complete lattice. O

Now we can state and prove Dirichlet’s unit theorem.

Theorem 5.2. (Dirichlet’s Unit Theorem) The group of units O3 of Ok
is the direct product of the finite cyclic group pu(K) and a free abelian group
of rank r + s — 1.
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Proof. Since T' = A\(O%), the map \ : O — ' = Z'™~1 is a surjective
group homomorphism and with ker\ = u(K).

Let v1,...,%4s-1 be a free system of generators of I'. Let €1,...,¢6.451 be
such that A(e;) = ;. Then

Z 7 z _
pE)Ney €56y =1,
le.,
7 7 zZ o
p(K) e €6 =0k,
where €Z denotes any integer power of ¢;.

Hence there exist elements € - - - €,45_1 € O} such that every e € O} can be
written uniquely in the form

_ mi meo My4s—1
e=Crel et 6 [0,

where ¢ € u(K) and mq,...,m, s 1 € Z. O]

The units €y, ..., €645 1 are called fundamental units.

5.3 Regulator

Identifying [[[R]* = R"**, H becomes a subspace of the euclidean space
R™** and thus itself a euclidean space.

We may therefore try computing the volume of the fundamental mesh Vol(A(O}))
of the unit lattice I' = A\(O})) C H.

Let €1,€5,...,¢;, where t =1 + s — 1, be a system of fundamental units and
® the fundamental mesh of the unit lattice A(O})), spanned by the vectors
Aer), ..., A\(g) € H.

Now let us take a vector in R"** orthogonal to H. We will choose

1
L,...,1) e R".

—— (1
m<”

Then g, A(€1), ..., A(&) is a basis of a complete lattice in R™"*. The funda-
mental mesh of this lattice has volume:

)\0 =

\/% )\1 (61) s )\1(615)
d = |det : : :

T;Jrs Arri(en) o0 Apa(er)
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If ¢ is the fundamental mesh of I" in H, then Vol(®) = d. We can compute
d by adding all rows to any chosen row. For instance, if we do this for the
first row, we get

TFs 0 -0
0 Aa(€ <o Agle
T P e
0 Ari(er) oo Apa(er)

Therefore, letting the bottom right ¢ x ¢ matrix to be A, we have d =

V7T + 5| det(A)).

Definition 5.3. The regulator of K, denoted by Ry, is defined to be the
absolute value of the determinant of any t X t, wheret =r + s — 1, minor of

the matrix
)\1 (61) s )\I(Et)

/\t+1(€1) >\t+1(€t)

From our above analysis, we see that the regulator is well-defined, i.e., it is
invariant under the choice of minor, which follows since d is independent of
the choice of the fundamental system of units and also choice of deletion.
The explicit form of this matrix is:

log|mi(er)] -+ log|mi(es)l
log|T.(e1)] -+ log|7.(€)]
log|trsa(en)? -+ log|ria(e)]* |

l0g|7}+s(€1)|2 l09|7—r+5(€t)‘2

where 7, ..., 7. are the real embeddings of K and 7,1, ..., 7.1s are the dis-
tinct complex embeddings, up to conjugation, of K.

5.4 Units in a quadratic field

Let K be a quadratic field of discriminant d. In the notation of n = r + 2s,
if d >0, thenr=2and s =0;if d <0, then r =0 and s = 1.

In the case of real quadratic field K, the only roots of unity in K are real
roots of unity, viz., £1.
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So, by Dirichlet’s unit theorem, every unit € in K can be written in the form
+ef, n € Z, for a fixed unit ¢; in K, asr+s—1=2—1=1 in this case.

Also, €1 # £1 (otherwise, we will not get the other units in K). If ¢; has this
property, so do ¢, !, —€;, —e;*. But among e, €; ", —€;, —€; ', exactly one of
them is greater than 1. We denote it by n and call it the fundamental unit
of K.

It is uniquely determined and every unit € in K is of the form £+n" for n € Z.

5.4.1 Pell’s equation

Any unit ¢ € K = Q(+/d) of discriminant d > 0 gives rise to a solution of
the Diophantine equation

2? —dy* = +4; x,y € Z.

Since Ni(€) = Ny (ZVdy — 2=d® y5,q Ny (e) = +1.

Conversely, if for d > 0 in Z, there exist x,y € Z satisfying 2 — dy? = 34,
then %ﬁ is a unit in K = Q(\/E)

In case d is the discriminant of a real quadratic field, we’ll have a non-trivial
solution to the Diophantine equation. This equation 22 — dy? = 4 is called
the Pell’s equation.

If d < 0, K is an imaginary quadratic field and ¢t =r + s — 1 = 0. Thus by
Dirichlet’s unit theorem, every unit in K is a root of unity.

We know, the roots of unity form a finite cyclic group. Thus, the units in K

form a finite cyclic group of order w.

Proposition 5.2. When K is a complex quadratic field with discriminant d,
such that if

(i) d < —4, then w = 2,
(ii) d = —4, then w =4, and
(iii) d = —3, then w = 6.

We don’t look at d = —2 =2 (mod 4) ord = —1 =3 (mod 4) because d =0
(mod 4) or d =1 (mod 4).
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Proof. Let K = Q(v/d) and let o € K be a unit. Also, @ = p + q(—d+2\/3)
where p,q € Z. Then,

Nicla) = (p+ a2 + L = 1. (5.1)

So, (p+4)? < land ¢* < 7.

Case(i) If d < —4, then ¢ = 0. So, &« = p = 1 are the only units in K.
Therefore, w = 2 for d < —4.

Case(ii) If d = —4, then ¢ = 1,—1 or 0.
Ifg=0,then p=41. If ¢g=1, then p=2. If ¢ = —1, then p = —2.

Hence in Q(v/—4) = Q(7), the only units are +1 and ++/—1. Therefore,
w=4.

Case(iii) K = Q(v/—3). Here also ¢ = 0,1 or —1.

Substituting everything in equation (5.1) we get the feasible values of p in
Z, and thus eventually the units in the field K. The only units here are:

{£1,+(2 + £2), (1 — %3} Hence w = 6. O



Chapter 6

Ramification theory

Let K be a number field, A = Ok the ring of integers of K, L an extension
of finite degree of K, and B = Oy, the integral closure of A in L (i.e., the
ring of integers of L).

The ideal POy = PB generated in B by a non-zero prime ideal P of A, is
not in general prime. It splits into a product of prime ideals, as stated by
Dedekind’s theorem, i.e., PB = [ P{".

6.1 Preliminaries from rings and modules the-
ory

Let us now recall a few results from Ring and module theory.

Definition 6.1. Let A be an integral domain and let S be a multiplicatively
closed subset of A— {0} and 1 € S.

Ring of fractions of A with respect to S or localisation of A at S, denoted
by ST'A is defined as {¢Ja € A, s € S}.

S~1A is a commutative ring which contains A. If S = A\ {0}, then S™'A =
K. If S = {1}, or if it contains only units in A, then S7!A = A.

Proposition 6.1. Let A be an integral domain and let S be a multiplicatively
closed subset of A. Let A’ = S71A.

(1) For any ideal I' of A, it is true that (I' N A)A" = I". So, the mapping
I' — I' N A is an increasing injection of the set of ideals of A’ into the set
of ideals of A.

33
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(2) The mapping P' — P’ N Ais an isomorphism of the partially-ordered
set (poset) of prime ideals of A" on the poset of prime ideals P of A, which
satisfy PN S = ¢. The inverse mapping is P — PA’.

Corollary 6.1. If A is a Noetherian integral domain, then every ring of
fractions ST A is Noetherian.

Proposition 6.2. Let R be an integral domain, A a subring of R, S a
multiplicatively closed subset of A — (0), and let B be the integral closure
of A in R. Then the integral closure of S™*A in ST'R is S™1B.

Corollary 6.2. If A is an integrally closed ring, then S™'A is integrally
closed.

Proposition 6.3. If A is a Dedekind ring, then every S™'A is a Dedekind
Ing.

Proof. We know S~!A is Noetherian and integrally closed. Since when going
from the set of prime ideals of A to prime ideals of S7'A, we leave out the
prime ideals P whose PN.S # ¢ (by Proposition 1 (2)). Thus, every non-zero
prime ideal of S7'A is maximal. O]

Proposition 6.4. Let A be a Dedekind ring. Let P be a non-zero prime ideal
of A. Let S = A — P. Then S7'A is a principal ideal ring. More precisely,
there exist a prime p € S™'A = Ap such that the non-zero ideals of S™'A
are of the form (p™), n > 0.

Proof. Since P is the only non-zero prime ideal of A disjoint from S, the only
non-zero prime ideal of S™!'A is Q = S~!P.

Since, S7!A is a Dedekind ring, its only non-zero ideals are of the form Q",
n > 0, due to the Dedekind’s theorem. (Let I # (0) be an ideal in Ap. I =
product of prime ideals in Ap = Q™ for some n > 0.

Let p € Q — Q?. The ideal (p) C Q but (p) ¢ Q. So, (p) = product of Q’s
= @™ if an only if n = 1. So, (p) = @ and (p") = Q" for every n > 0.

Thus S™1'A is a principal ideal ring and all its ideals are of the form (p"),
n > 0. L]

Proposition 6.5. Let A be an integral domain, S a multiplicatively closed
subset of A — (0) and let A be a mazimal ideal of A, where M NS = ¢.
Then S~YA) MSTA= Al A .
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6.2 Splitting of prime ideals in an extension

Theorem 6.1. Let A be a Dedekind ring, K its field of fractions, L is an
extension of finite degree over K and A’ the integral closure of A in L. Let
characteristic of K = 0. Then A’ is a Dedekind ring and an A-module of

finite-type.

Proof. A’ is integrally closed by construction. It is Noetherian and an A-
module of finite-type. It remains to show that every prime ideal P’ # (0) of
A’ is maximal.

Let z € P’ — {0} and consider an equation of integral dependence of x over
A, the degree of which is minimum, 2" + a,_12" ' + -+ + @12 + ag = 0,
a; € A.

Then a, # 0. Also, ag € A/rNA C P'NA. Thus, PPN A # (0). Since PPN A
is a maximal ideal of A, and A/(P'N A) is a field.

But A/(P' N A) may be identified with a subring of A’/P’ is integral over
A/(P'NA), (since A" is an integral over A).

Thus A’/ P’ is a field, so P’ is maximal. O
Corollary 6.3. Along with the hypothesis of the previous theorem, if we
assume that A is principal, then A" is a free A-module of rank n.

Let P be a non-zero prime ideal of A. Then BP is an ideal of B and its has
an expression of the form:

BP = f[ P
=1

where P;’s are distinct prime ideals of B and e;’s > 0, by Dedekind’s theorem.
Proposition 6.6. The P;’s are precisely those prime ideals 9 of B such that
INA=P.

Proof. For a prime ideal & of B, we have Z N A = P if and only if BP C 2.
Because, P C ¥ implies BP C 9.

Further, it BP C &, then PBNA C NA. Thus, P C BPNA C ZNA. But
2N A is a prime ideal of A, which is a Dedekind ring. Therefore Z N A = P.

Clearly, BP = P{*Py* ... Pcm. So, BP C P, for every i = 1,2,...,m. Thus,
from our equivalence, ,N A = P. ]
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Both A/P and B/P; for 1 < i < m are fields. Since B is an A-module of
finite-type, B/P; is a finite-dimensional vector space over A/P.

The residual degree of P, over A, denoted by f;, is defined to be the
dimension of B/P; over A/P as a vector space.

The exponent e; in BP = P;'... P is called the ramification index of
P, over A.

Also, BPNA = P, because, P C BPNA. Also, BPNA = (P*...P")NA.
So, foreach 1 <i<m, bLNA=P. Thus, BPNACP.

So, B/BP is a finite-dimensional vector space over A/P.

Theorem 6.2. With the preceding notions, > e;f; = [B/BP : A/P] = n,
i=1
where n denotes the degree of the extension L over K.

The above expression is also known as the fundamental identity about split-
ting of prime ideals.

Proof. For the first equality, note that B/BP = B/[[ P{ = [[ B/F;* (by
i=1

Chinese remainder theorem). So it suffices to show that [B/ P : A/P] = e, f;.

From the definition of f;, we know that B/P; is a field of degree f; over A/P.

Consider the sequence of ideals,
BOPDODP'D..PPDP'P,D...PP* D> --- D P ... P = BP

For each r;, P/*/P/""" is a B/P-module. Since there is no ideal between
P and P it must have dimension 1 as a B/P-vector space. Hence,

dimension f; as a A/ P-vector space.

Therefore each quotient in the chain
BO>PDOP'D>---D P
has dimension f; over A/P, and so the dimension of B/P{" is e f;.

The proof of the second equality is easy when B is a free A-module. For exam-
ple, if A is a principal ideal domain, then by Corollary 7.3, if {z1,zs, ..., 2, }
is a base of B as an A-module. Reduction modulo BP gives a base for B/BP
over A/P.

Now, let S be a multiplicative subset of A disjoint from P and such that
S~1A is principal (e.g., S = A — P).
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Write B = S7'B and A’ = S7'A. Then B’ is the integral closure of A’ in
L,and PB' =[[(P,B')“.

Since, P,NA =P, P,NS = ¢ and P,B’ is a non-zero prime ideal of B’. So,
from the first part of the proof,

[B'/PB': A'/PA] = iei (B'/P.B - A'/PA.

But, [A'/PA’: A/P| and [B/P,B’ : B/P)].

Therefore, > e;f; = [B'/PB’' : A’/PA'], but A’is principal, and so, [B’/PB’ :
A'"/PA’| = n. This completes the proof. O

Example 6.1. (Cyclotomic fields)

Let p be a prime number and let ¢ = (,» be a primitive p” — th root of unity
in C. In this case, all the complex p” — th roots of unity are of the form ¢/,

j=1,2,...p".

The primitive roots of unity are those for which j is not a multiple of p. The
number of primitive roots is ¢(p") = p” — p"~!, where ¢ is the Euler’s phi
function. These are the roots of the cyclotomic polynomial

r—1

A L e e T

F(X) ST

Let e = p"~'(p — 1) and let (i, ..., (. be all the primitive p” — th roots of
unity. Since the constant term of F/(X + 1) is p,

+p = H(Cj —1).

Let Ok be the ring of integers of K = Q[(]. Clearly, (; € Ok and (; — 1 €
Ok (¢, — 1) for all j and k, since ¢; = ¢! of ¢ and ¢! — 1 = (& — 1)(¢F " +
-+ 4 (, +1). Thus all ideals Og(( — 1) are same.

So, pOx = Ok (1 — 1)¢. Write pOx = [ P;?, where P;’s are prime ideals of
i=1

Ok. The e;’s must be multiples of e.

But e > [Q[¢] : Q)], so e > i e; f;- Thus,
i=1

m=1l,e=e1, fi =1and [Q[(]: Q] =e.
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In summary:

(1) QU] :Q=e=p"""(p—1).

(ii) Ok (¢ — 1) is a prime ideal of O of residual degree 1,
(iii) pOx = Ok (G — 1)°.

6.3 The discriminant and ramification

Let PB = [[ Pf". A prime ideal P of A is said to ramify in B (or in L) if
i=1
any one of the ramification indices e; is > 1.

In this section, we will characterise those prime ideals of A which ramify in
B. In particular, we want to show that only finitely many prime ideals of A
ramify in B. First we need some lemmas.

Lemma 6.1. Let A be a ring, let By, ..., B, be rings containing A, which
q
are free A-modules of finite-type. Let B = [ B; be the product ring. Then

=1
the discriminant is :

q
Dpja = H DB, )A-

=1

Proof. We will prove the lemma for ¢ = 2 and the rest will follow by induc-
tion.

So, for ¢ = 2, i.e., B = B; X B».
Let {x1,...,Zm}, {¥1,-..,ym} be bases for By, By as A-modules.

By is identified with By x (0) and By is identified with (0) x By. We may
consider {(z1,0),..., (Zm,0),(0,1),...,(0,4n)} as a base for B = By x By
over A.

By definition of product ring structure, z;y; = 0, so, T'r(z;y;) = 0.

Therefore,

D((1,0), -, (i 0), (0,51, - (0, ) = dlt (Tr(gixﬂ Tr(;yj).)

So,

D((x1,0), ..., (m,0),(0,31), ..., (0,ym)) = det(Tr(z;x;) - Tr(viy;))
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= det(Tr(x;z;)) - det(Tr(yiy;)) = D(x1, ..., 2m) - D(Yas - -+, Ym)-
[

Lemma 6.2. Let A, B be rings, A C B and I be an ideal of A. Assume that
B is a free A-module with base {x1,...,x,}. For x € B, T be the residue
class of x in B (mod IB). Then {zy,...,%,} is a base of B/IB over A/l
and

D(fl, PN ,fn) = D([El, PN ,IL‘n).

Proof. Let x € B. If the matrix of multiplication by = with respect to the
base {z1,...,2,} is (a;;), where a;; € A for every i,7, then the matrix of
multiplication by Z with respect to the base {z1,...,%,} is (a;;).

Thus, Tr(z) = Tr(x).
Let = = z;x;, we get Tr(T;x;) = Tr(Tx;) = Tr(x;z;). So,
D({z1,...,2,}) = det(Tr(z;7;) = det(Tr(z;x;))
= det(Tr(x;z;)) = D(x1, ..., %,).

]

Lemma 6.3. Let K be a field which is finite or characteristic of K is 0. Let
L be a finite dimensional (commutative) K-algebra. L is reduced, i.e., has
no non-zero nilpotent elements if and only if Dk # (0).

Proof. Suppose L is not reduced. Let x € L be a non-zero nilpotent element.
Let {x1,...,2,} be a base for L over K, such that z = ;.

Then z; - x; is nilpotent for every j and multiplication by x;x; is a nilpotent
endomorphism of the vector space L over K. Thus, all the characteristic
values of this endomorphism are zero. So, Tr(z1x;) = 0.

The matrix (T'r(x;z;)) has a row comprised entirely of zeroes. Hence, D(z, ...

O, i.e., -@L/K =0.

Next suppose that L is reduced. Then the ideal (0) of L is expressible as a
finite intersection of prime ideals, i.e., there exist prime ideals Pi,..., P, in

q
Oy, such that (0) = () B;.
i=1

Since, L/ P; is an integral domain and a finite dimensional algebra over K, it is
afield. Hence, P; is a maximal ideal of L and P;+P; = L for i # j. Therefore,
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g
L = [] L/P; (by Chinese Remainder Theorem and since P, N ---N P, =
i=1

Pi...P, = (0)).

q

By Lemma 7.1, Y1k = [] Zr/p/x- But Zi/p,/x # (0) since K is a finite
i=1

field or a field of characteristic zero.

Therefore, 71,k # (0). O

Definition 6.2. Let K and L be number fields with K C L. Let A and B be
the rings of integers of K and L, i.e., Ox = A and Op = B. The discrimi-
nant of B over A (Ppya) is the ideal of A generated by the discriminants of
bases of L over K, which are contained in B.

Remark 6.1. If {z1,...,x,} is a base of L over K contained in B then
Trik(zix;) € A. So, D(xy,...,x,) € A. Thus, Dgsa is an integral ideal of
A. Tt is non-zero as D(xy,...,x,) = (det(a;;)* # 0, where (a;;) is the matriz
of multiplication of D(xy, ..., xz,) with respect to the given base.

Remark 6.2. When B is a free A-module (example, when A is principal),
we have already defined the discriminant Ppsa as the ideal generated by
D(ey,...,e,), where {e1,...,e,} is an A-module base for B.

Our old definition coincides. Given any base {x1,...,x,} of L over K con-

n
tained in B, x; = > aijej, with a;; € A.
j=1

Therefore, D(z1,...,x,) = (det(a;;))?Dler, ..., e,).

Theorem 6.3. Let the notations be as in the definition. In order that a
prime ideal P of A ramify in B, it is necessary and sufficient that it contain
the discriminant Y4. Hence there are only finitely many prime ideals of A
which ramify in B.

Proof. Let PB = P{'... Py’ where Py, ..., P, are distinct prime ideals in B
and eq,..., e, are their ramification indices.

Suppose P is a ramified prime. Then e; > 1 for some ¢ and thus the ring
B/P{" contains a non-zero nilpotent element (which may be taken to be any
element of P#~' — P{*), and hence so does B/PB. So, B/PB is not reduced
and thus Z(p/pp)/a/p) = (0) (by the previous lemma).

Now put S =A—- P, A’ =S1A B =SB, and P = S7'P. Then A’ is
a principal ideal ring, B’ is a free A’-module, A/P = A’/P’ and B/PB =
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B'/P'B’. Therefore, writing {ey,...,e,} for an A-module base of B’, we
know that Z(p/pp)/a/p) = (0) if and only if D(ey,...,e,) € P (because of
Lemma 7.2).

If D(ey,...,e,) € P and if {x1,...,2,} is a base for L over K contained in
B, then x; = ) aj;e;, with aj; € A" (because B C B’). So,
D(xy,...,x,) = det(al;)*D(ey, . .., e,) € P'.

Since P'N A = P, we can say that D(z1,...,2,) € P and Z5/4 C P.

Conversely, if Zg/4 C P then D(ey,...,e,) € P’ (since we can write ¢; =
y;s~1, with y; € B and s € S, for 1 <i <n. Thus,

1
D(ey,...,en) = —==D(y1,...,yn) € A'PDpja C AP =P')

$2n
The second assertion follows from the fact that Zp,4 is a non-zero integral
ideal of A and thus Dedekind’s theorem applies.
]

Corollary 6.4. Let K be a number field. A rational prime p ramifies if and
only if p divides di . In particular, only finitely many primes of Z ramify in

K.

6.4 Galois extensions of number fields
We will recall a few results from Galois theory to facilitate the rest of the
chapter.

Given a field L and a set G of automorphisms of L, the set x € L such that
o(x) =z, for every o € G is a subfield of L, called the fized field of G.

For an extension L of a field K, the set of K-automorphisms of L is a group
under composition of mappings.

Theorem 6.4. Let L be an extension of finite degree n of a field K, where
K is finite or of characteristic zero. Then the following are equivalent:

(A) K is fized field of the group G of K-automorphisms of L.

(B) For every x € L the minimal polynomial of x over K has all its roots in

L.
(C) L is generated by the roots of a polynomial with coefficients in K.
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Under the above conditions, the group G of K-automorphisms of L is of order
n.

Definition 6.3. If the above conditions are satisfied, L is called a Galois
extension of K and G is called the Galots group of L over K.

If G is abelian (respectively, cyclic), L is called an abelian (respectively,
cyclic) extension of K.

Corollary 6.5. Let K be a finite field or of characteristic zero. Let dimg (L) =
n. If H is a group of automorphisms of L such that K is the fixed field of H
and |H| = n, then L is a Galois extension of K and Gal(L/K) = H.

Theorem 6.5. (Fundamental theorem of Galois theory) Let K be a
field which s finite or of characteristic zero. Let L be a Galois extension of
K and G = Gal(L/K). To any subgroup G' of G, let k(G") be the fized field
of G'. To any subfield K" of L containing K, let g(K') be the subgroup of G
consisting of all K’'-automorphisms of L.

(A) The mappings g and k are bijections and are inverses of one another.
They are both decreasing with respect to the inclusion relations on G, i.e.,
they reverse inclusions. The field L is a Galois extension of any intermediate

field K" (i.e., K C K' C L).

(B) In order that an intermediate field K' be a Galois extension of K, it is
necessary and sufficient that g(K') be a normal subgroup of G. In this case,
Gal(K'/K) =2 G/g(K'").

Example 6.2. (Quadratic extensions) Let dimg(L) = 2. L = K]|x] for
some x € L which is a root of X? — d, where d is the discriminant and is
square-free. The other root of this polynomial is —z. There exists a non-
trivial K-automorphism such that o(z) = —z, i.e., o(a+bx) = a — bz, where
a,be K.

Clearly, 02 = 1 and K is the fixed field of 0. Thus L is a Galois extension of
K with cyclic Galois group {1,0}.

Example 6.3. (Cyclotomic extensions) Let K be a field of characteristic
zero. Let (, be a primitive n — th root of unity in an extension of K, and let
L = K((,). The field L is called a cyclotomic extension of K.

The minimal polynomial of (,, over K divides X™ — 1. So, its roots are n —th
roots of unity and consequently power of (,,. Thus L is a Galois extension of
K by the previous theorem.

Let G = Gal(L/K). Any o € G is determined by its effect on ¢,. More
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precisely, o(¢,) is a power Cﬁ(a) of ¢,, where j(o) is uniquely determined
modulo n.

For 0,7 € G, o(7(¢)) = o(G7) = (279 So, j(or) = j(0)j() (mod n).

In other words, 0 — j(o) defines a homomorphism of G — (Z/nZ)*.
Since j(o) determines o, this homomorphism is injective, and G is abelian.

Thus any cyclotomic extension is abelian. If n is a prime p, this extension is
even cyclic and G is isomorphic to a subgroup of (Z/pZ)* = F;.

Example 6.4. (Finite fields) Let F, be a finite field (¢ = p®, with p prime).
Any extension of finite degree of F, is of the form Fn. Its degree is n.

The mapping z — 27 is an automorphism of Fy» with [, as its fixed field.
For any z € Fn, we have ¢/ (x) = 2 and 0" = 1 (since x € F,» satisfies the
relation 29" = x).

On the other hand, for 1 < j < n —1, 0/ # 1 since if j < n, there exists
x € Fpn such that 7 # x. (Suppose for j < n and o?(z) = 27 = z, for
every z € Fgn. Hence, every = € Fn satisfies P(X) = X% — 1, thus the
number of solutions of P(X) > ¢". Also since Fy» is a field, so the number
of solutions of P(X) < ¢". This is a contradiction.)

Thus {1,0,...,0" '} is a cyclic group of order n.

According to the Corollary 6.5, Fy» is a cyclic extension of degree n of F,.
Its Galois group has a canonical generator, the mapping z —— z%. This
mapping is called the Frobenius automorphism.

Now assume L is Galois over K, with G = Gal(L/K). Let P be a prime ideal
of Og. If P is lying above P in Oy, i.e. P | POy and 0 € G, then o(P) is a
prime ideal above P. Indeed, o(P) N Ok C K, thus o(P) N O =P N Ok
since K is fixed by o.

Theorem 6.6. With the hypothesis as above, let

g
PO, =]]Ps

i=1
be the factorisation of POp in Op. Then G acts transitively on the set
{P1,...,P,}. Furthermore, we have that

ep =+ =¢4=¢,

fi=-=f,=f. and
[L:K]=efg.
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Proof. To show G acts transitively, let P be one of the P;. We need to prove
that there exists o € G such that o(P;) = P, for P; any other of the P;’s.

We have seen previously that there exists S € P such that SO, P~ lis an
integral ideal coprime to POp. The ideal

I=]]eBOLP™)

oeG

is an integral ideal of Op, (since BOLP~! is), which is again coprime to POy,
(since o(BOLP™!) and o(POy) are coprime and o(POy) = o(P)o(0Or) =
POy).

Thus I can be rewritten as

[: al;lca(ﬁ)OL B NL/K(@)@L
II o(P) I[ o(P) °
ceG oceG

and we have that
[ o(P) =Nk (B)OL.
oceG
Since Np/k(8) = [] o(B), € P and one of the o is identity, so we have
ceG

that NL/K(B) eP.

Furthermore, Np,k(8) € Ok since f € Op, and we get that Ny (3) €
PNOg = P.

Hence, P divides the right hand side of the above equation, and thus the lest
hand side. Since I is coprime to P we get that P divides [] o(P).
oceG

In other words, using the factorisation of P, we have that

g
[1 #(P) is divisible by PO, =[] P

oeG i=1
and each of the P; has to be among {0 (P)},cq-

To show that all the ramification indices are equal, note that from the first
part we know that there exists o € G such that o(P;) = Py, i # k. Now we

have that
g g

o(POL) = [[o(P)" = PO, =[] Pf'.

1=1 i=1
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where the second equality holds since P € Ok and L over K is Galois. By
comparing the two factorisations of P and its conjugates, we get that e; = ey.

That all the inertial degrees are equal follows from the fact that o induces
the following field isomorphism

OL/'PI = OL/O'('PZ)

Finally we have that
|IGl=n=[L:K|=efg.

6.4.1 Decomposition and inertia groups

In this section, A is a Dedekind domain, K is the field of fractions of A and
characteristic of K = 0. Let K’ be a Galois extension of degree n of K, and
let A’ be the integral closure of A in K.

Let z € A" and let 0 € G. Applying o to an equation of integral dependence
of x over A shows that o(x) € A'.

Also, A’ is stable under G, i.e., 0(A’) = A’ for all o € G (since, o(A’) C A’
and also, 071 (A") C A, so, A’ = oo 1 (A") C o(A4")).

On the other hand, if P is a maximal ideal of A and P’ a maximal ideal of
A" such that P"N A = P( i.e., P' appears in the factorisation of PA’ into a
product of prime ideals in A’). Then, o(P")NA = P. So, o(P’) also appears
in the expression for PA’, with the same exponent as P’.

We shall call P" and o(P’) are conjugate prime ideals of A’. We are going
to show that all the prime ideals in the prime factorisation of PA’ in A" are
conjugate.

Proposition 6.7. From Theorem 7.6, we can say that the maximal ideals
P! of A" which appear in the expression for PA’ as a product of prime ideals

in A" are all conjugate. They have the same residual degree f and the same

g
ramification index e. Thus, PA" = (][] P})¢ and n =efqg.
i=1

Proof. Suppose if, P’ be one of the P,’s and assume that another of the P;’s,
which we shall denote by (Q’, is not a conjugate to P’.

Since " and o(P’) for o0 € G are maximal and distinct, o(P’") ¢ @Q'. Now
we need the following lemma.
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Lemma 6.4. Let R be a ring, Py,..., P, a finite set of prime ideals of R,
and let I be an ideal of R such that I ¢ P; for any index i. Then there exists
b € I such that b € P; for any i.

Proof. Without loss of generality, suppose P; ¢ P, for i # j. Let x;; € P,—F,

for i # j, 1 < 4,57 < q. Since I ¢ P;, there exists a; € [ — P;. Put

b; =a; [[ ;. Then b; € I, b; € P; for i # j and b; ¢ P; (since P is prime).
1#]

q
Thus, b=by +---+b,e 1 — |J P. 0

=1

Returning to the previous discussion, from the lemma we see that there exists
x € @) such that x ¢ o(P’) for all 0 € G.

Consider the norm of z, N(z) = [] 7(z). Since 7(x) € A’ for every 7 € G,
TeG

we see that N(z) € @', in fact N(z) € Q' N A = P. Also, z ¢ 7 1(P).
Hence, 7(z) ¢ P’ for any 7 € G. Since P’ is prime, N(x) ¢ P’ and this
contradicts N(z) € P. O

Now let P’ be a maximal ideal of A’ such that P’ N A = P.Those 0 € G
for which o(P’") = P’ form a subgroup D of G, called the decomposition
group of P’, denoted by D(FP’).

If g denotes the number of conjugates of P’, then |G/D| = g = |G||D|™,
where G/D = {0 € Glo(P') # P'} = {0 € Gloi1(x) = oy(x) for every x €
P’ thenlo1] = |o2]}. So, card(D) = 2 =ef.

For o € D, the relations 0(A’) = A" and o(P’) = P’ imply o induces an auto-
morphism 7 : A'/P' — A’/P’, where  (mod P’) — o(z) (mod P’). This
map is well-defined because © = y (mod P’) implies o(z) = o(y) (mod P’).
So, @ is an A/P-automorphism.

Consider the mapping D(P’) — Aut,,p(A’/P’) such that ¢ — . This
map is a group homomorphism.

Consider the kernel (1) of this map, 7(Z) = Ida/p/(Z) = T, for every z €
A'/P'. So, o(x) (mod P') = x (mod P’) and thus, o(z) — z € P’, for every
x € A’. Hence, I = {o € D|o(z) —x € P’ for every x € A’}.

Therefore, I is a normal subgroup of D, called the inertia subgroup of P’

Proposition 6.8. With the same notations as above, assume that A/P is
finite or of characteristic zero. Then A'/P' is a Galois group of degree f of
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A/P, and the mapping o — T is a surjective homomorphism of D on the
Galois group of A'/P" over AJ/P. Moreover, card(I) = e.

Proof. Let Kp be the fixed field of D. Let Ap = AANKp and Pp = P’NAp
be the prime ideal.

According to the previous proposition and the definition of D, P’ is the only
prime factor of A'Pp.

Put A'Pp = (P')¢ and write f’ for the residual degree of [A'/P': Ap/Pp).
According to the fundamental identity of the splitting of prime ideals, we
have ¢'f' = [K': Kp| = card(D) = ef.

Since A/P C Ap/Pp C A’/P'. So, f' < f. Also since PAp C Pp, we get
e <e.

Therefore, e = ¢’ and f = f" and thus A/P = Ap/Pp.

Now let z be a primitive element for A’/P’ over A/P and let x € A’ be a
representative of 7. Let X" +a, 1 X" ' + -+ +a, = P(X) be the minimal
polynomial for x over Kp.

We know that a; € Ap. The roots of P(X) are all of the form o(z) with
oeD.

The reduced polynomial P(X) = X" +a, 1 X"~ +---+ao has its coefficients
in A/P and the roots of P(X) are all of the form (z) with o € D.

Consequently, A’/P’ contains all conjugates of  over A/P and A'/P’ is a
Galois extension of A/P.

Also, since every conjugate of z over A/P is of the form &(Z), every A/P-
automorphism of A’/P’ is of the form & for some o € D. Thus the Galois
group of A’/ P’ over A/P may be identified with D/I.

Since the order of [A'/P': A/P] = f, so, card(I) = e. O
Corollary 6.6. In order that P not ramify in A’ it is necessary and sufficient
that the inertia group I of P’ (of any P over P) be trivial.

Remark 6.3. Write Dp/, Ip for the decomposition and inertia groups of
the maximal ideal P* C A’. For a conjugate ideal o(P’), for o0 € G

Dg(p/) = O'Dp/O'_1 and Ig(p/) =olpo—1.
To prove the above statement, note that for 7 € Dp/, we have

oro (o(P)) = o71(P') = a(P).
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So, cDpio™! C Dgy(pry. For the reverse inclusion, let 7 € D,(py. So,
7(oc(P)) =o(P),ie.,0 'ra(P)=0"'o(P)=P.
So, 0770 € Dp:. Thus, 7 € cDpo™ L.
Similarly, for 7 € Ip, and x € A,
oro N (z) —x =o07(0c7 (z)) —o0o Hz) = o(r(c(2) — o (2)) € o(P).
So olpo™! C I;(pry. The reverse inclusion follows from a similar argument.

So when K is an abelian extension of K, the groups Dy(pr for o € G are all
equal, and so are I,(py. They only depend on the ideal P of the ring A.

6.5 The Frobenius automorphism

Let K, K’ be number fields such that K’ is a Galois extension of K with
Galois group G. Let A = Ok and A’ = Og. Let P be a maximal ideal of A
which does not ramify in A’, and let P’ be a prime factor of PA’.

The inertia group (/) of P’ consists only of the identity of G alone and
its decomposition group D is canonically isomorphic to the Galois group of
A'/P" over A/P.

But the Galois group of A’/ P’ over A/P is cyclic with a canonical generator
o : T+ x% where ¢ = card(A/P).

Thus, D itself is cyclic with a canonical generator o defined by the relation
o(z) =z (mod P’) for any x € A’. This generator is called the Frobenius
automorphism of P’. We denote it by (P, K'/K).

For 7 € G, we have (as in the remark),
(r(P),K'/K)=71(P',K'/K)r .

In particular, if K’ is an abelian extension, (P’, K'/K) depends only on the
K'/K)

ideal P of A. In this case we write, (=%

Proposition 6.9. With the preceding hypothesis and notations, let F' be an
intermediate field (K C F C K') and write f for the residual degree of P'NF
over K. Then :

(a) (P K'|F) = (P',K'|K)!,

(b) If F is Galois over K, the restriction of (P, K'/K) to F' equals (P' N
F,F/K).
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Proof. (a) Put ¢ = (P', K'/K). By definition, o(P’') = P' and o(x) = 29
(mod P’) for every z € A’, where ¢ = card(A/P).

Thus o/ (P') = 2¢' (mod P’) for every z € A'. By definition of f, ¢/ is the
cardinality of the residual field (A’ N F)/(P' N F'). Also, the decomposition
group of P’ over F' is obviously a subgroup of the decomposition D of P’
over K. It is of order

1 1
[A"/P': (AANF)/(PPNF)] = ?[A’/P’ : A/P] = ?card(D).
Since D is cyclic and generated by o, the only subgroup of D of order w

is generated by of. This completes the proof of (a).
(b) Suppose F' is Galois over K and write o’ for the restriction of o to F.

Since o(P’) = P’, it follows that o(P' N F) = P'N F and ¢’ belongs to the
decomposition group of P’ N F over K. Also, it is clear that o'(x) = ¢
(mod P'NF), for every x € AN F, with ¢ = card(A/P). O

6.5.1 Application to cyclotomic fields

We are going to utilise the theory we just developed to present another proof
of irreducibility of the cyclotomic polynomial.

Theorem 6.7. Let ( be a primitive complex n — th root of unity. Then:
(a) No prime number which does not divide n ramifies in Q[(].

(b) Q[C] is an abelian extension of Q of degree p(n) and with Galois group
isomorphic to (Z/nZ)*.

Proof. (a) Let F'(X) be the minimal polynomial of  over Q and let deg(F'(X))
d, i.e. d = dimg(Q[¢]). The polynomial F(X)|X™ — 1. Let X" —1 =
F(X)G(X). So, nX" ! = F/(X)G(X) + F(X)G'(X).

Put X = ¢ in the above equation. We get, n¢"~! = F'({)G((). Since ( is a
unit of Q[(], it is of norm =+1.

Upon taking norms, N (n¢" 1) = N(F'({)G(C)), i.e., né(£1) = N(F'({))N(G(()).

We also know that the discriminant D(1,(,...,¢% 1) = £N(F'(¢)). Hence,
N(F'(()|n, ie., D(1,¢, ..., ¢4 |nd.

From theorem, in order that a prime ideal P of A ramify in B, it is necessary
and sufficient that it contain the discriminant Zp,4. There are only finitely
many prime ideals of A which ramify in B.
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Therefore, no prime number which does not divide n, ramifies in Q[¢]. This
proves (a).

(b) Recall that Q[(] is an abelian extension of Q and that there is an injective
homomorphism j of the Galois group G of Q[(] over Q into (Z/nZ)*.

More precisely, the element o € G raises all the n — th roots of unity to the
power j(o). Let p be a prime number which does not divide n.

Q[l/Q

By (a), the Frobenius automorphism === is defined, denote it by o;,.

Writing A for the ring of integers of Q[(] and P for an arbitrary prime factor
of pA’, we obtain, from the definition of Frobenius automorphism the relation
op(x) = 2P (mod P) for every x € A. In particular, let j = j(o,), we get
¢ =(¢? (mod P).

Let P(X)=X"—1= ][] (X —=("). Then recall that

0<r<n-—1

H (Cp — C’T) = P/(Cp) — ncp(nfl).

0<r<n—1;r#p (mod n)

So n is relatively prime to p, since P N 7Z = pZ and since ( is a unit in the
ring of integers of Q[¢], we may conclude from the relation P’(¢?) = n¢P™=1

that, [T —-¢)¢P.

0<r<n-—1
r#p (mod n)

The relation (=¢? (mod P) thus implies that j represents the residue class
of p modulo n. Hence j(G) contains the residue class modulo n of all prime
numbers p which do not divide n.

This means, j(G) = (Z/nZ)*. This proves (b). O

6.5.2 Proof of Quadratic reciprocity laws

Let ¢ be an odd prime. Let K be the cyclotomic field generated by a primitive
q — th root of unity in C. The Galg(K) = G = F;. It is cyclic and of even
order ¢ — 1.

There is a unique subgroup H of index 2, which corresponds to the subgroup
of squares (IF;)Z C . Thus, K contains a unique quadratic field F.

No prime number p # ¢ ramifies in F for, if it did, it would ramify in K.
This would contradict the theorem in the previous section.



6.5. THE FROBENIUS AUTOMORPHISM 101

Set

F=Q\/¢) if¢g=1 (mod 4)
F=Q(/—q)if¢g=3 (mod 4).

qg—1

Note that when ¢ = 3 (mod 4), then —g = 1 (mod 4). Put ¢* = (—1) 2 g.

So, F = Q[v/*].

Let p be a prime number and p # ¢g. Write o, for the Frobenius automorphism
(KT{Q) The restriction to F is (]F/TQ). It is the identity if 0, € H, i.e., if the
exponent j(o,) = residue class of p (mod ¢) is a square in F;. Otherwise, it
is the nontrivial automorphism of F.

In other words, identifying the Galois group G/H of F over Q with {41, —1}.

We have,
(9)-()

by the definition of Legendre symbol.

On the other hand, theory regarding splitting of primes below in an extension
F tells that:

1. If p splits in F, then (%) = Id automorphism.

2. If p remains a prime in ', then (%) is the non-trivial automorphism.

()~ (2)

Comparing the equations (6.1) and (6.2), we get

If p is odd,

q

-5-()7 )
()=
(0

But,

—_

Thus,

/N
3
~_
Il
|
S~—
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For the case p = 2,

2 splitsin Fif ¢ =1 (mod 8),

2 remains a prime in F if ¢ =5 (mod 8).

-1 (¢9)2-1

However, (—1)"s =(—-1)" s =+41if¢"=1 (mod 8) and = —1if ¢* =

(mod 8). Thus,
(F/TQ) — (—1)q%’1. (6.3)

So, from the equations (6.1) and (6.3), we get




Chapter 7

Dirichlet’s class number formula

We begin this chapter, by recalling a few facts about the Riemann zeta
function.

Definition 7.1. The Riemann zeta function, denoted by ((s) is defined
for all R(s) > 1 by the convergent series

((s) =) ni

n>1

Theorem 7.1. (Euler product) The above series converges absolutely for
all R(s) > 1 and there ((s) can be written as an infinite product

1\ !
<<s>=H(1——S) ,
peN p
where the product is taken over all prime numbers p € N.

Theorem 7.2. The Riemann zeta function has a meromorphic extension to
the whole complex plane with a simple pole at s = 1 and no other poles. The
residue of (— function at s =1 1s 1, i.e.,

lim (s — 1){(s) = 1.

s—1+

7.1 Dedekind zeta function

Let K be an algebraic number field of degree n. The group Hg of ideal
classes of K is a finite group of order h = hg. In this chapter, we will try to
obtain a formula for h when K is a quadratic field.

103
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Let Cy =1,C1,...,Ch_1 denote the different ideal classes. For each class C,
we define the zeta function of C, denoted by (x(s,C) as

Ck(s,C) = Y !

I(#£0)eC N(I)S

The summation is over all non-zero integral ideals I of C'. For simplicity here
we take s > 1, but the sum exists for an s € C such that R(s) > 1.

The zeta function of the filed K, called the Dedekind zeta function and
denoted by (k(s), is defined by

i) = 3 ls.0) = Y s

CeHg 1#0

The summation is now over all non-zero integral ideals of K.

Proposition 7.1. The Dedekind zeta function (k(s) converges absolutely for
s> 1.

Proof. Let x > 0 be a real number. We want to first show that

> le < I (1—N(1P>S)_l, (7.1)

N(I)<z ( >S B N(P)<z

the product being over all prime ideals P with N(P) < x.

Now,

1\ 1 1
<1_W) =yt REE (7.2)

By Dedekind’s theorem, any integral ideal I can be written uniquely as a
product of prime ideals. Further if N(/) < z then every prime divisor P of
I satisfies N(P) < z.

So, (7.1) follows from multiplying the series in (7.2) for all N(P) < z.
Also,

1\ 1 1
[ (-wpr) -2 wim- X v O

N(P)<z N()<z N>z
where the last summation is over the integral ideals I of norm > z, all of
whose prime divisors are of norm < z.

Any prime ideal P contains a unique prime number p € Z. We have N(P) =
p/ for a certain integer f > 1 so that p/ < x if N(P) < z.



7.1. DEDEKIND ZETA FUNCTION 105

Also there are at most n distinct prime ideals P, ..., P,, with g < n con-
taining a given p. In fact, they are uniquely determined by the equation

p(’)K :Pfl...Pgeg,
and

g
p" = N(pOk) = HN<Pi)€i = prie" > pf.

Hence (7.1) gives

1 < (1 1 )n
N(I)<z N(I)S a p<z ps

(we can create the various norms of N(/)~® by choosing the required part
from each product).

Since the product [[(1 — I%)_l is absolutely convergent for s > 1, the series
> ﬁ converges for s > 1. This completes the proof of the proposition. [J

Remark 7.1. If we now let x — oo in equation (7.8) we obtain the Euler
product for Cx(s), viz., Ck(s) = [[(1 — ~rs )"t This equality in fact holds
P

N(P)*
for s € C and Re(s) > 1.

Remark 7.2. The Fuler product is in fact a more general phenomenon of the
under lying multiplicative structure. If {a,,} is a sequence of complex numbers

[o.¢]
with ay = 1 ayy, = amay for all integers m,k > 1, and if > |a,| < oo, then
m=1

-1
S i = L0 —a) "
m=1 p
In particular, for Re(s) > 1, we have

=3 T05)

m=1

We now recall the Wiener - Tkehara Theorem. Consider the following
general statement.
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Theorem 7.3. Let A(x) be a non-negative, monotonic non-decreasing func-
tion of =, defined for 0 < x < co. Suppose that

/A(x)e_“dx
0

converges for Re(s) > 1 to the function f(s) and that , for some non-negative

mnteger c,
&

fo) = =

has an extension as a continuous function for Re(s) < 1. Then the limit as
T — oo of e tA(x) is equal to c.

An important application of the theorem is to Dirichlet series of the form

Qn

s?

n>1

where a,, is non-negative. If the series converges to an analytic function in
Re(s) > b, with a simple pole of residue ¢ at s = b, then

>~ gt
ap ~ =1°.
b

n<x

Applying this Dirichlet series version to the logarithmic derivative of the
Riemann zeta function, where the coefficients in the Dirichlet series are values
of the von Mangoldt function, it is possible to deduce the Prime number
theorem from the fact that the Riemann zeta function has no zeroes on the
line R(s) = 1.

7.2 Class number formula for quadratic num-
ber fields

In this section, K stands for a quadratic number field, unless otherwise stated.

Definition 7.2. Let K be a quadratic number field with discriminant d. Then
the Dirichlet L-function Ly(s) defined for all s > 1 is given by
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So Remark 7.1 applied to a,, = (%) % gives us

- EE) 102

m>1 p

We will now state the Dirichlet class number formula for quadratic fields and
then prove the propositions required to arrive at the result.

Theorem 7.4. (Dirichlet) Let K be a quadratic field of discriminant d. Let
h be the class number of K. Then we have

- 2LLy(1)  ifd>0
wir,1)  ifd<o.

Here w counts the number of roots of unity in case of the imaginary quadratic
fields and n > 1 is the fundamental unit in case of real quadratic fields.

Before proving this, we need to relate (x(s) with the Riemann zeta function.

Proposition 7.2. For s > 1, we have

Ck(s) = C(s)La(s),

and hence holds for all complex number # 1.

Proof. We start with the Dirichlet L-function. We know that for all n € N,
the symbol (£) for quadratic reciprocity is —1,0, or 1 and so [(£)| < 1. Hence
Lg(s) converges absolutely for s > 1.

Now note that since the symbol (%) is multiplicative, for s > 1 we can rewrite
the L-series in Euler product form so that

wo-I0-()5) - I (-3) I () I

where p, ¢, r are all prime numbers.

Q.
SN—
|
—
—~
Ry
S~—
|
o

Then we can perform the same splitting of the Euler product for the Riemann
zeta function to get

o= I ()" I (o) () TLC-2)
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1\ ? 1\7! 1\
- 1— — 1— =) .
H ( ps) H ( q23> H ( 7’8>
()= ()= (7)o

But we know that, if (g) = +1, then p split and there exist distinct prime
ideals P, Py C Ok such that pOx = P, P,. Taking the norm gives N(P,P;) =
N(P)N(P,) = N(pOg) = p*. But both ideals are prime and hence N(P;) #
1 for ¢ = 1,2. Therefore, N(P;) = N(P,) = p.

If (g) = —1, then ¢ remains a prime and ¢Ox = (@ is a prime ideal, so
N(Q) = N(qOk) = ¢*.

Finally, if (g) = 0, then r is ramified and there exists a prime ideal R C Ok
such that rOx = R?. Therefore, N(R) = r.

Using these facts, we can write the Euler product in terms of norms of ideals:

O (=) (- 5mr) AL (1-5ar)

1 —1
I (1- .
N(R)®
()0
But since every prime ideal in Ok must be one among the three cases men-

tioned above, every prime ideal must occur only once in the above product.
Therefore, we can simplify it to

Cs)Lals) = [ (1_N(113)s)_1‘

PCOg

But we know from Proposition 7.1 that the above product is (x(s) for all
s > 1. Therefore, (x(s) = ((s)La(s). O

Now we encounter a constant, known as the Dirichlet structure constant k
for a quadratic field K with discriminant d. We first need a lemma.

Lemma 7.1. Let Q be a bounded open set in the plane R%2. For X > 0, let

Qx = {6 = (£,8) € R? (% %) c Q}.

Let No(X) denote the number of lattice points in Qx. Then, limx o N‘;((;X) =

[[d&idé; = area of Q, provided that this integral exists in the sense of
0
Riemann.
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Proof. Divide the plane into squares S of side % parallel to the coordinate

axes. For any S, let P(S) denote the point whose coordinates have smallest
values (the lower-left vertex).

Clearly, No(X) = {number of squares S | P(S) € Q2}. Now if Ny, N, denote,
respectively, the number of S C Q and SN # ¢, then by the definition of
Riemann integral, &4 — [ d&,d&s and % — [[ d& d&s.

) Q

» X

Since N7 < Ng(X) < Ny, the result follows because in Riemann integration,
f<gimplies [ f< [g. O

Theorem 7.5. Let K be a quadratic field with discriminant d and w the
number of roots of unity in K. Let C be an ideal class of K and N(X,C)
the number of non-zero integral ideals I € C' with N(I) < X. Then

LONXLO)
X X
exists and we have
2logn '
) ifd >0
2n if d < 0.

e

Proof. Let J be an integral ideal in C~!, then for any integral ideal I € C,
IJ = aOgk, where a € J (because from a previous lemma, there exists
w € O such that ged(IJ,wOf) = J. We know that I.J = aOk for a € K,
thus, ged(aOk,wOk) = J, which means, o € J and w € J).

Conversely, if a € J, then I = J 'aOk is an integral ideal in C.

Moreover, |Ng(a)| = N(I)N(J). So, N(I) < X if and only if |Ng(a)| <
XN(J) =Y (say). Consequently, N(X,C) is the number of non-zero prin-
cipal ideals in aOg, a € J such that |[Ng(a)| <Y.

In other words, N(X,C) = {number of a € J,a # 0, which are pairwise
non-associates and for which |Ng(a)| < Y}.

Case(i) d > 0 : Let n > 1 be the fundamental unit. Clearly, for any a € J,
a # 0, there exists m € Z such that if n; = an™, we have

m
1

0 <log T
| Nic(m)2|

< logn. (7.4)
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Conversely, if 1,17 are associate elements of J satisfying 8.4, then 1, = eno,
where € is an unit with 1 < |e| < 7. So, € = £1. Hence,

Uil
1

2N (X, C) = {number of n; € J |0 < |[Ng(n)| <Y,0 < log
| Nic(m)2|

< logn}.
(7.5)

Case(ii) d < 0 : In this case we have wN(X,C) = {number of n; € J : 0 <
[Nic(m)| <Y}

In either case, let (B, 32) be an integral base of J and let /3], 35 be the
conjugates of (1, [y respectively. Let €2 denote the following open set in the
plane:

if d >0,
Q= {&=(&,8) €R? | 0 < [&161 + &fol €151 + &3] < 1,
€181 + &
! ! T <l :
og €181 + E250|2|61 8, + E284]2 ogn}
it d <0,

Q={¢=(6,8%) €eR? |0 < |66+ &pfo]* < 1}

We show €2 is bounded in both cases.

For d > 0, since |& 51 +&202||€18] + €255 < 1 and % < n?, we see that
both & 51 + &5, and & 5] + &5, are bounded in Q. Thus, &, & are again
bounded in Q, since 3,8, — 23, # 0 (in fact, 515, — o) = =N(J)Vd by
A(I) = N(I)*d). For d < 0, |&61 + &6 = |&18] + &5 < 1 and again,
since (105 — o] # 0, we get that £, & are bounded in .

So now,
number of lattice points in §2 5 ifd>0
WN(X,C) = numbeir of lz?ttice points iTl Q 5 + number Ay ifd<0
of lattice points (&1, &) with |£,8; + &Be|* <Y and
§181 + 22| = [&18) + 235 # 0.
Since, Ay = Y am, where (a,,) is a sequence of real numbers and Y > 0.
m<Y
Then Ay = O(VY) = O(v/X). Hence
. wN(X,C) . No(WVY)
tim )t S V) [[ade 0o
Q
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using Lemma 7.1. If d > 0, set uy = & 51 + &P and uy = & 8] + &85 Since,
|6185 — Bof81| = N(J \/— we have

//d§1d§2 (j)\/c_ll*/duldug,

where U* = {(u1,u2)|0 < ujug < 1,1 < 2 < n*;ug, up > 0}
Making change of variables, v; = ujus and vy = f [ d&dé = m So

that, along with (7.6), we get the theorem. If d < 0, set U = 36(5151 +§252)
and uy = I'm(&1 81 + &P2) and find that

[ i Jf o

uitu3<l

This completes the proof. O

Let K be as above, a quadratic field with discriminant d and for X > 0,
N(X, K) the number of integral ideals I with N(I) < X. Since x from the
above theorem is independent of the ideal class C,
N(X,K)
A8 T x

=h -k,

where h is the class number of K.

Hence by Wiener-Ikehara theorem, we get the following result.

Proposition 7.3. lim, ,1+(s — 1)(x(s) = h - k, where h is the class number
of the quadratic field K and r is the Dirichlet’s structure constant, defined
in the previous theorem.

Now, using the fact that (s — 1){(s) — 1 as s — 17, and from the previous
results in this chapter, we obtain Theorem 7.4, i.e.,

Let K be a quadratic field of discriminant d. Let A be the class number of
K. Then we have

2logn

wdr (1) ifd <O0.
Consider the equation (x(s) = ((s)La(s). Recall that ((s) has a simple pole
at s = 1, with residue 1. Since L,(s) is the Dirichlet L-function of a non-

trivial character, Ly(s) has an analytic extension to the whole of complex
plane. In addition, Theorem 7.4 implies that L4(1) > 0.

- {‘TLAD ifd>0
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Hence (x(s) has a simple pole at s = 1 and has an meromorphic extension
to the whole of complex plane with only a (simple) pole at s = 1.

This is also true for any number field, as shown by Hecke. We do not prove
Hecke’s result here.



Chapter 8

Analytic class number formula

In the previous chapter, we proved the Quadratic class number formula given
by Dirichlet. In this chapter we will prove a more general result that has man
other applications.

Recall that the Dedekind zeta function of a number field K is defined by

Gels) =2 e 1 (- N<1P>s)1 ’

where I ranges over non-zero ideals of Ok and P ranges over nonzero prime
ideals of Ok, as we showed in the previous chapter the sum and product
converge absolutely for R(s) > 1.

The following theorem is often attributed to Dirichlet, although he originally
proved it only for quadratic fields. The formula for the limit in the theorem
was proved by Dedekind, and analytic continuation was proved by Landau. In
1903, Landau proved that for every number field K, (x(s) can be analytically
continued to Re(s) > 1 — W.This was the first proof for general K
that (x(s) is meromorphic around s = 1. Hecke later showed that, like
the Riemann zeta function, the Dedekind’s zeta function has an analytic
continuation to all of C and satisfies a functional equation, but we won’t

take the time to prove this here.

Theorem 8.1 (Analytic class number formula). Let K be a number field
of degree n. The Dedekind zeta function (x(z) extends to a meromorphic
function on Re(z) > 1 — % that is holomorphic except for a simple pole at
z =1 with residue
2"(2m)°hk R
fim (= — 1)) = 2o Tl

z—1+ WK |dK|

113
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where r and s are the number of real and complex places of K, respectively,
hy is the class number of K, Ry is the requlator, wi is the number of roots
of unity in K, and di is the discriminant of K.

In practice the class number hg is usually the most difficult quantity in the
analytic class number formula to compute. We can approximate the limit in
the LHS to any desired precision using a finite truncation of either the sum
or product defining (x(s). Provided we can compute the other quantities to
similar precision this provides a method for computing (or at least bounding)
the class number hg.

8.1 Lipschitz parametrisability

In order to prove the analytic class number formula, we need an asymptotic

estimate for the number of nonzero ideals of Og-ideals I with absolute norm

N(I) bounded by a parameter ¢ € R.q, that we will let go to infinity, this is

necessary for us to understand the behaviour of (x(2) =Y ﬁ as z — 1T.
T

The idea is to count points in log(Ox N K*) that lie inside a suitably closed
region S of R™* that we will scale by ¢. In order to bound this count as
a function of ¢ we need a condition on S that ensures that the count grows
smoothly with ¢, this requires S to have a special shape. A sufficient condition
for this is Lipschitz parametrisability.

Definition 8.1. Let X and Y be metric spaces. A function f : X — Y
1s Lipschitz continuous if there exists ¢ > 0 such that for all distinct
1,T2 € X,

d(f(z1), f(z2)) < c-d(z1, 22).
Every Lipschitz continuous function is uniformly continuous, but the converse
need not hold.

Definition 8.2. A set B in a metric space X is d-Lipschitz parametris-
able if it is the union of the images of a finite number of Lipschitz continuous

functions f; : [0,1]* — B.

Now we will prove a few results to set the ground for the proof of the analytic
class number formula.

Lemma 8.1. Let S C R™ be a set whose boundary 0S =S — S is (n — 1)-
Lipschitz parametrisable. Then

#(AS L") = p(S)" + 0" ),
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as t — oo, where p is the standard Lebesque measure on R™.
Here and in what follows, for a finite set A, #A denotes the number of

elements in A.

Proof. 1t suffices to prove the lemma for positive integers, since #(tS N Z™)
and p(S)t" are both monotonically increasing functions of ¢ and u(S)(t +
D" — u(S)t" = O™ ).

We can partition R™ as the disjoint union of half-open cubes of the form
Clay,...,an) ={(z1,...,2,) € R"|x; € [a;,a; + 1)},
with ay,...,a, € Z. Let C be the set of all such half-open cubes C. For each
t > 0, define
By(t) = #{C € C|C C tS},
By (t) = #{C € C|CNtS # ¢}.

It is easy to note that for every ¢t > 0, we have
Bo(t) < #(tSNZ") < By(t).

We can bound Bj (t) — By(t) by noting that each C'(ay, . .., a,) counted by this
difference, contains a point (ay,...,a,) € Z™ within a distance /n = O(1)
of a point in 0tS = t0S.

Let fi,. .., fm be Lipschitz functions from [0, 1]"~! — 95, whose images cover
0S, and let ¢4, ..., ¢, be constants such that d(f;(x1), fi(x2)) < ¢id(xq, z2),
for all z1, 2, € [0, 1]"1.

Now, for any y € 0S5, we have y = f;(x1,...,x,_1) for some i, and if we put
rj = [tz;] € Z, so that 0 < z; — 2 < 1, then

1 Tn—1 T Tn—1 N
i(—, ... <g - _ — ... — < —
d(y7fl< t 3 ) n )) =G d((xlu y L 1)7( t 3 ) ¢ )) < ¢ r = tv

where ¢ == /nmax; ¢;.

<

¢, from the

So, for every y € 05, there lies a point within the distance of
following set

T Th—
P:{fi<?1,..., ”t1>:1§z’§m,0§r1,...,rn_1§t}.

This set P has cardinality m(¢t + 1)"~' = O(t""!). Hence we can say that
every point of 9tS is within a distance of ¢ of one of the O(¢"~!) points in

tP.
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The number of integer lattice points within a distance y/n of a point in 9tS
is therefore O(t"~1) as well, and therefore,

Bi(t) — Bo(t) = O(t" ).
Also, note that By(t) < p(tS) < Bi(t) and wu(tS) = t"u(S). Hence the
lemma follows. O
We recall the definition of a covolume of a lattice.

Definition 8.3. Let I is a lattice in R™. Let (vy,...,v,) be an ordered basis
of I'. Let v; = (Vi1, ..., 0in), for 1 <i<mn.

The covolume of L is the absolute value of the determinant of the matriz:

V11 V12 ... Ulin
V21 V22 ... Up
Unt Upn2 ... Upp

This definition is independent of the choice of the basis.

Corollary 8.1. Let I be a lattice in an R-vector space V =R"™ and let S C V
be a set whose boundary is (n — 1)-Lipschitz parametrisable. Then

N p(S) n n—1
#(tSﬂF)—mt +O(t" ).

Proof. The case I' C Z" is given by the lemma.

We now note that if the corollary holds for sI', for some s > 0, then it also
holds for T', since tS N sl = (£)SNT.

For any lattice I', we can choose s > 0 so that sI' is arbitrarily close to an
integer lattice ( we can take s to be the LCM of all denominators appearing
in rational approximations of the coordinates of a basis for I'). The corollary
then follows. O

Remark 8.1. With the definition of covolume given above, we can say that,
covol(I') = Viep(®) = pu(P), for any fundamental mesh @ for T

So the ratio #‘?()F) = % i the above corollary.

We now apply the above corollary to I' = Ok and want to replace covol(Ok)
with \/dy, which requires us to use the normalised Haar measure on Kg
defined in Chapter j.
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8.2 Counting algebraic integers of bounded norm

From the discussions in Chapter 5, we can write Oj; = pu(K) x U, where
U C O3 is free of rank 7 + s — 1, and p(K) is the group of roots of unity in
K. The subgroup U is not uniquely determined, but let us fix a choice.

We want to estimate the quantity
#{I: N(I) <t},
where I ranges over the non-zero ideals of Ok, as t — oo.

As a first step, let us restrict our attention to non-zero principal ideals («) C
Ok. We then want to estimate the cardinality of {(a) : N({(a)) < t}. We
have (a) = (/) if and only if & € O%. So, this is equivalent to

{a € K*NOk|N(a) < t}/O5.
Let S C K. Denote by the notation S/Oj; the set of equivalence classes

of S under the equivalence relation o ~  if and only if & = uf for some
u € O.

If we now define,
Ky o = {zr € Kg|Nk(r) <t} C K C K,
then we want to estimate the cardinality of the finite set
(Kﬂzét N (’)K) /(9;(,

where the intersection takes place in Kr and produces a subset of Ky, that
we partition into equivalence classes modulo Oj.. Note that the finiteness of
the set (Kﬂg,q N Ok) /Oy follows form the finiteness of the integral ideals of
bounded norm.

Simplify the matter by replacing Oj; with the free group U C O, we then
have a wx — to — 1 map

(Ki <, NOk) /U = (Kg ,NOk) /O%.

It suffices to estimate the cardinality of (Kﬁgét NOk) /U and divide the
result by wg.

Recall that for x = (x;) € Kj, the norm map N : K} — R% is defined by
the product of the coordinates, i.e.,

r+s

N(x) :H|95z| H E

i=r+1
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and satisfies Tr(Log(z)) = log(N(z)) for all x € Kj. We now define a
surjective homomorphism v : Kj — Kf |, such that  — N (z)~'/".

The image of K ; under the Log map is precisely the "trace zero hyperplane"
H (as in Chapter 5) in R""*. Here, Log(U) = Log(O3) = I is a lattice in
H. Let us fix a fundamental mesh ® for the lattice I' in H. So,

S = v (Log™(®))

is a set of unique coset representatives for the quotient Kp / U. If we now
define
Sgt = {IL’ c S‘N(l’) < t} C KR,

we want to estimate the cardinality of the finite set
S« N Ok.

The set O is a lattice in the R-vector space Kg of dimension n. We have
tS<; = S<in, so we can estimate the cardinality of S<; = t%Sgl (because of
Corollary 8.1 with S = S<; and I' = Ok by replacing ¢ with t%). The only
thing remaining to prove is that the boundary of S<; is (n — 1)-Lipschitz
parametrisable.

The kernel of the Log map is {£1}" x U(1)?, where U(1) = {z € C|zz = 1}
is the unit circle in C.

We thus have a continuous isomorphism of locally compact groups

K& = (R*)" x (C*)° 5 R™* x {£1}" x [0,27)", (8.1)

T = (T, o, Ty 21, 5 2Zs)
= (Log(z)) x (sgn(x1),- -+, sgn(wz,)) x (arg(z1), - -, arg(zs))

where the map to R"** is the Log map, the map to {£1}" is the vector of
signs of the r real components, and the map to [0, 27)* is the vector of angles
arg(z) such that é = '8 of the s complex components.

The set S<; consists of 2" connected components, one for each element of
{£1}. We now parametrise each of the components using n real parameters
as follows:

e r + s — 1 parameters in [0, 1) that encode a point in ® as an R-linear
combination of Log(ey), ..., Log(€1s_1), where €1, ..., €451 are a ba-

sis of U;
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e s parameters in [0, 1) that encode an element of U(1)?;

e a parameter in (0, 1] that encodes the nth-root of the norm.

These parametrisations define a continuously differentiable bijection from the
set

C=[0,1)""1x(0,1 clo1]"
to each of the 2" disjoint components of S<;. The boundary OC is the
boundary of the unit n-cube, which is clearly (n—1)-Lipschitz parametrisable.

Thus, each component of S<;, and therefore S<; itself, is (n — 1)-Lipschitz
parametrisable.

Now applying Corollary 9.1 to the lattice Ok and the set S<; in the n—dimensional
R-vector space Kr with ¢ replaced by t%, since S<; = t%Sgl. This gives

_ o mS<r 1, 1oty _ [ #(S< -
#(8a N Ox) = 2o @)+ O(E)"™) (m)HO(t )-

(8.2)

Next we need to compute 1(S<;) and we will use the normalised Haar mea-
sure p on K. We will use the isomorphism in (8.1) to make a change of coor-
dinates and understand how this affects the Haar measure pon Kg = R" xC?.

In terms of the standard Lebesgue measures dor and dA on R and C, we have
p = (dz)"(2dA)*, where the 2dA comes from the fact that the normalised
absolute value for each complex place is the square of the Euclidean absolute
value on C.

For each factor of K = (R*)" x (C)* C R" x C?, we define the following
maps:
R* — R x {£1}
z = (log |z], sgn(x))
te! i (1,%1)
dx s é'dl Hf+1}
and
C* — C x [0,2n)
2z (2log |z], arg 2)
6l/2—|—i€ “ (l’e)

2dA s 2e%d(e?)df = edl d,
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where dl is the Lebesgue measure on R g4y is the counting measure on
{£1}, and d6 is the Lebesgue measure on [0, 27). We thus have

K = R™ x {£1}" x [0,27)°

o €™ e iy 1 0,

where the trace function 7'(.) sums the coordinates of a vector in R"**,
We now make one more change of coordinates:
R - R xR

r=(21,...,Trys) = (X1, ..., Tpys1,y = T(x))

7@ figrss > €Y pugrss—1dy.

If we let m7 : R"™ — R""~! denote the coordinate projection, then the
measure of w(®) is R~ is, by definition, the regulator Ry.

)

The Log map gives us a bijection

~ 1 1
S§1—>(I)+( OOO] <n’.“7ﬁ

3Il\3

2
n
1 2 2
= N(2)"Y"v(z) — L log N(z) | - N
£ = N "(a) s Loglv(o) +log ) (7o 2 2)
og

The coordinate y € (—o0,0] is given by y = T'(logx) = log N(z). So, we
can now view S<; as an infinite union of cosets of Log™!(®) parametrised by

e = N(z) € (0,1].
Under our change of coordinates, we have
Ki SRR x {£1}" x [0,27)°
S<1 — m(P) X (—00,0] x {£1}" x [0, 27)".
Since Rx = pigr+s—1(m(P)), we have

0
1(Ser) = / VR (27)dy = 2 (27)" Ric.

—0o0
Putting this into equation 8.2, we get

2" (27)* Ry

S<1N0k) =
#5s ) < ||

) t+ Ot ). (8.3)
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8.3 Proof of analytic class number formula

We now have the necessary results to prove the analytic class number formula.
The main tool is the following theorem, which uses our discussion from the
previous section to give a precise asymptotic estimate on the number of ideals
of bounded norm.

Theorem 8.2. Let K be a number field of degree n. Ast — oo, the number
of non-zero integral ideals I of norm N(I) <t is,

QT(QW)ShKRK 1—1
———— |t+ Ot n
< wrVdg ) " < >7

where r, s are the number of real and complex conjugates of K, respectively;
hy is the class number of K; Rk is the requlator; wk is the number of roots
of unity in K; and di 1s the discriminant of K.

Proof. In order to count the non-zero integral ideals I with norm N(I) <,
we group them by ideal class.

For the trivial class, we just need to count non-zero principal ideals («),
equivalently, the number of non-zero a € Ok with N(«a) < ¢, modulo the
unit group O7. Dividing equation 8.3 by wg to account for wx —to—1 map

S<tN Ok — (Kg <, N Ok)/Ok,

we obtain

Wk |dK’

#1(a) C Og|N(a) <t} = (M) t+0 (tl—%) . (84)

To complete the proof, we now show that we get the same answer for every
ideal class. Fix an ideal class [I], with I a non-zero integral ideal. Multipli-
cation by I gives a bijection

{ideals J € [I]|N(J) < t}
2y {non-zero principal ideals (a) C I|N (o) < tN(I)}
— {non-zero e € I|N(a) < tN(I)}/Oj.
Let Sjp,<¢ denote the set on the RHS. The estimate in (8.4) derived from
Corollary 8.1 applies to any lattice in Kg, not just Ok. Replacing Ok with
I'in (8.4), we get
2r(2m)° Ry

#sins = (S

)tN(]) +0 (tl—%>
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- (2o et - (S ) o )

Note that the RHS does not depend upon the ideal class [I]. Summing over
ideal classes yields,

#{non-zero integral ideals J|N(J) <t}

=y #SMSF:<gl&iﬁ£§£>t+()Gli)y

NeMx wicy/ld|
as claimed. N

Lemma 8.2. Let ay,as,... be a sequence of complex numbers and let o be
a real number. Suppose that

a;+---+a=0(t%) (ast — o0).

Then the Dirichlet series »  apn~* defines a holomorphic function on R(s) >
o.

Proof. Let A(z) = > a, Writing the Dirichlet sum as a Riemann-
0<n<lzx
Stieltjes integral, for R(s) > o, we have

_ Aéf) _ /OOA(:c)d(xS)
= (0—0)— 7A(x) (x:fl) dr

To conclude that lim, ., 22 = 0, we use |A(z)| = O(2°) and that R(s) > o.

xS

The integral on the RHS converges uniformly on R(s) > ¢ and the lemma
follows. u
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Remark 8.2. The above lemma gives us an abscissa of convergence o for
the Dirichlet series ) ®. This analogous to the radius of convergence of a
POWET SETiES.

Lemma 8.3. Let aq,a0,... be a sequence of complex numbers that satisfies
a;+---+a=pt+0O(t7) (ast — x0)

for some o € [0,1) and p € C*. The Dirichlet series Y a,n~* converges on
R(s) > 1 and has a meromorphic continuation to R(s) > o that is holomor-
phic except for a simple pole at s = 1 with a residue p.

Proof. Define b,, .= a, — p. Then by + -+ + b, = O(t°) and

Z apn~ "’ =p Z n—°+ Z by = p((s) + Z byn "%,

We know that the Riemann zeta function ((s) is holomorphic on Re(s) > 1
and has a meromorphic continuation to Re(S) > 0 that is holomorphic except
for a simple pole at s = 1 with residue 1.

By the previous lemma, > b,n~° is holomorphic on Re(s) > o, and since

o < 1, it is holomorphic at s = 1. So the entire RHS has a meromorphic
continuation to Re(s) > o that is holomorphic except for the simple pole at
s =1 coming from ((s), and the residue at s =11is p-14+0 = p. [

We can now proceed to prove the analytic class number formula.

Theorem 8.3 (Analytic class number formula). Let K be a number field
of degree n. The Dedekind zeta function (x(z) extends to a meromorphic
function on Re(z) > 1 — % that is holomorphic except for a simple pole at
z =1 with residue

. 2T(27T)shKRK

lim (z — 1 2) = = —
z—>1+( )k (2) = pr wre/ ]

where r and s are the number of real and complex places of K, respectively,
hy is the class number of K, Rk is the requlator, wk is the number of roots
of unity in K, and dg is the discriminant of K.

Proof. We have

1 ag
(x(2) :;W :Zt_z7

t>1
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where [ ranges over non-zero integral ideals, and a;, := #{I|N(I) = t} with
t € Z>1. If we now define

. QT(QW)ShKRK

PK -
WK |dK|

9

then by Theorem 8.2 we have,
a4+ ag = #{IINI) <t} = prt + O (tl*%) (as t — 00).

Applying the previous lemma with o = 1 — %, we see that (x(z) = > ait™
extends to a meromorphic function on Re(z) > 1 — % that is holomorphic
except for a simple pole at z = 1, with residue pg. n

Remark 8.3. As noted before, Hecke proved that (i (z) extends to a mero-
morphic function on C with no poles other than the simple pole at z =1 and
it satisfies a functional equation. If we define the gamma factors

Ta(z) = wﬂr(g), and Te(z) = (27)~*T(2),
and the completed zeta function

Ex(2) = dr [ ’Tr(2)" Tc(2)® Cx(2)

where r, s are the number of real and complex places of K respectively; then
Ex(z) is holomorphic except for simple poles at z = 0,1 and satisfies the
functional equation

Ex(2) = Ex(1 = 2).
In the case K = Q, we have r =1 and s = 0, so
§o(2) = Tr(2)¢(=) = T/’T(5)Go(2),

which is the completed zeta function for the Riemann zeta function ((z) =

Co(2)-
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