Some fun Graphs!!

Shilpi Mandal

If you could wear a facemask for the rest of your day today, what colour would you want it to be?

The most basic graph

- The basic graph is a single vertex
- What is V, E, and F here?
- V = number of vertices
- E = number of edges
- F = number of faces

Vertices, Edges, and Faces

- Left Graph: 6 vertices, 0 edges, 1 face
- Middle Graph: 6 vertices, 6 edges, 3 faces
- Right Graph: 6 vertices, 6 edges, 2 faces

Connected Graph

Graphs and Connected Graphs

- A graph is when we have some vertices, and connect them with edges
- A connected graph means you can go from any point to any other point by traveling through edges

Making your own

- Draw a connected graph with only 1 edge
- Calculate V, E, and F

Planar Graphs and Faces

• A graph where no edges cross each other is a planar graph

Redrawing Planar Graphs

 You can sometimes rearrange how edges are drawn to make a graph planar

Breakout Rooms

Let's Explore Planar Graphs by Counting

- How many vertices are here?
- How many faces?
- How many edges?

Let's add some edges

- How many vertices are here?
- How many faces?
- How many edges?

Let's try a few... Graph1

And a few more.. Graph4

Time to reflect..

• Go back to all the previous graphs you worked on and answer this: Are there usually more vertices, edges, or faces?

Time to reflect...

• Go back to all the previous graphs you worked on and answer this: Were there more edges than the faces and vertices combined?

Is there a relationship between the number of edges, faces and vertices?

Euler Characteristic

<u>Definition</u>: It is defined as V - E + F for any connected planar graph.

Making your own II

- Draw a connected graph with only 2 edges
- Calculate V, E, and F
- What is the Euler characteristic?

Three-Edge graphs

- Can you draw three connected graphs, each with three edges?
- Can you make any more?
- What is the Euler characteristics of each (V E + F)

Adding a vertex and edge

- Let's take any of your graphs you have made
- Add a vertex somewhere outside, then connect it to another vertex without crossing any edges
- What is the new Euler characteristic (V E + F)?

Adding a new edge

- ◆ Let's take the graph below. We'll add a new edge between 2 vertices.
- How does this change the Euler characteristic (V E + F) in each case?

Time to conjecture...

• Do you notice a pattern? Can you conjecture something about the Euler characteristic?

Non-intersecting 4 points

 Can you draw 4 vertices so that when you connect every pair of points, none of them cross each other?

Unconnected graphs

- So far, we have worked with connected graphs.
- What are the Euler characteristics (V E + F) of the following unconnected graph?
- Compare it to the connected graph's Euler characteristics.

Unconnected Graph

Connected Graph

Moving to the real world

- Say there are 10 cities, and 16 highways connecting them
- None of the highways cross each other.
- Let's say the space between highways and cities are farms
- How many farms are there?
- If we follow the rules above, will the number of farms ever change?

The Graph Colouring problem...

 The process of assigning colors to the vertices such that no two adjacent vertices have the same color is caller Graph

Colouring.

The Graph Colouring problem...

- Chromatic Number: The smallest number of colours needed to colour a graph G is called its chromatic number.
- For example, in the above image, vertices can be coloured using a minimum of 2 colours.
- Hence the chromatic number of the graph is 2.

Four colour theorem

- A very famous result about graphs and colouring the vertices of graphs is called the *Four Colour Theorem*!
- Look it up if you want to know more!

THANK YOU!!